
Introduction to Computer Code
Computer Code for Beginners

Week 1

Matt Luckcuck

21/09/2017

1 / 54



Housekeeping

Housekeeping

Toilets
Fire Alarm
Additional Support
Please ask questions if you’re unsure!

2 / 54



Housekeeping

Each Week. . .

∼ 40 minutes of lecture
∼ 15 minutes break
∼ 65 minutes of practical

3 / 54



This Week

Outline

What is Programming?
Programming Languages
Programming Process
Python

Introduction
Detail

Overview of Practical
Overview of Course

4 / 54



What Is Programming?

5 / 54



What is Programming?

Has anyone done any programming before?

What about. . .

VCR?
Sky+ (or similar)?
Washing Machine?

6 / 54



What is Programming?

Has anyone done any programming before?
What about. . .

VCR?

Sky+ (or similar)?
Washing Machine?

6 / 54



What is Programming?

Has anyone done any programming before?
What about. . .

VCR?
Sky+ (or similar)?

Washing Machine?

6 / 54



What is Programming?

Has anyone done any programming before?
What about. . .

VCR?
Sky+ (or similar)?
Washing Machine?

6 / 54



What is Programming?

Programming is the process of giving instructions to
a computer.

7 / 54



What is Programming?

Programming is the process of designing and writing
instructions for a computer.

8 / 54



What is Programming?

Computers. . .

Computers are Stupid!
But good with numbers and repetition

We need to tell them exactly what to do
This means giving precise instructions. . .

. . . in a language the computer can ‘understand ’

9 / 54



What is Programming?

Building a Program

Program: sequence of algorithms to perform behaviour
Algorithm: sequence of instructions to solve a problem, e.g. . .

Recipe, or
Directions

Design of a part of the program

10 / 54



What is Programming?

Building a Program

Program: sequence of algorithms to perform behaviour
Algorithm: sequence of instructions to solve a problem, e.g. . .

Recipe, or
Directions

Design of a part of the program

10 / 54



Programming Languages

11 / 54



Programming Languages

Scratch
C C++

Java
Python Javascript

PHP

12 / 54



Programming Languages

Scratch
C C++

Java

Python Javascript
PHP

13 / 54



Programming Languages

Programming Languages

Provide a set of instructions to tell computer what to do. . .
Expressions
Variables
Control Structures
Keywords

That we combine according to grammar rules to make a
program

‘Understanding’

Computers only understand binary (0010)
Programming languages are human-readable then translated
into machine-readable

14 / 54



Programming Process

15 / 54



Programming Process

Approaches to Building a Program

Decomposition
Breaking a problem down into smaller parts
Solving a basic version of the problem, then add details

Patterns
Identify similarities and sequences
Different specific problems are often the same general shape

Abstraction
Focus on the important parts of a problem
Think of a bus route map

16 / 54



Programming Process

Approaches to Building a Program

Algorithms
Step-by-step instructions
Recipe

Debugging
Cycle of trial and error
Requires resilience

17 / 54



Programming Process

Analyse

Design

Code

Test

18 / 54



Programming Process

Designing an Algorithm

Problem: We need to make some tea!
Algorithm: . . .

19 / 54



Tea Anyone? – Basic Algorithm

1 Boil water
2 Add tea to the pot
3 Add boiled water to the pot
4 Brew tea
5 Pour tea into cup
6 Stir tea
7 Enjoy!

20 / 54



Tea Anyone? – A Little More Detail. . .

1 Boil water
2 Add tea to the pot
3 Add boiled water to the pot
4 Brew Tea
5 if sugar = true then
6 Add sugar
7 Pour tea into cup
8 if milk = true then
9 Add milk

10 Stir tea
11 Enjoy!

21 / 54



Tea Anyone? – Who Wants Tea?

1 Boil water
2 foreach person do
3 Add 1 spoon of tea to the pot
4 Add boiled water to pot
5 Brew tea
6 foreach person do
7 if sugar = true then
8 Add sugar
9 Pour tea into cup

10 if milk = true then
11 Add milk
12 Stir tea
13 Enjoy!

22 / 54



Tea Anyone?

What does this show us?

Processes:
Start small and add detail
Abstracting away from the details of boiling, brewing, etc

Building Blocks:
Sequence, Branching, and Loops
Variables for data that changes
Expressions

23 / 54



Python

24 / 54



Programming Tool Kit

Basic Building Blocks of Programs

Introduce:
Modules and Files
Functions
Variables
Control Structures

Much more detail over the coming weeks

25 / 54



Python Program Example

Hello World
Basic introductory programs

1 print ("Hello World !")

26 / 54



Modules

Modules

A module is a collection of code that performs related
behaviour
In Python, each file is a module
Design decision. . .

A simple program is likely to be one module
A more complex program is best split up into separate modules

27 / 54



Functions

Functions

A block of code, wrapped up for us to use when we need it
Lots of built-in functions (like print() )
We can write our own
Can take parameters (like print("Hello World"))
Can return values
Proper introduction to these next week

28 / 54



Variables

Variable

Data that our program uses
Box in the computer’s memory with a value inside
Label to remember what’s inside
So naming variables well is important!
name = value

Assigning a value to the name

29 / 54



Variables

Variable Types

Whole Numbers — Integers (eg 1 or 10)
Decimal Numbers — Floating Point Numbers (eg 3.14)
Boolean (True or False)
String of characters (Text)
Others. . .

1 score = 10
2 name = "Matt"

30 / 54



Sequences, Branches, and Loops

Sequential Instructions

A program is a sequence of instructions. . .
Unless we tell it otherwise

Sequential code is a basic building block
But often too simple

Sequential instructions: back to Hello World. . .

31 / 54



Sequences, Branches, and Loops

1 print("Hello ")
2 print("World!")

print(“Hello”)

print(“World”)

32 / 54



Sequences, Branches, and Loops

Branching Control Structure

Simplest way of breaking up sequential code
Choice between one branch or another branch

Based on a boolean condition
Using the keywords if and else

Two blocks that are executed conditionally
Blocks must be indented

Example: Sale of an item costing £5 . . .

33 / 54



Sequences, Branches, and Loops

1 money = 10
2
3 if money >= 5:
4 print("You have enough ")
5 else:
6 print("Not enough ")

money = 10

Line 4

money 
>= 5

Line 6

FalseTrue

34 / 54



Sequences, Branches, and Loops

Multiple Branches

What if two branches aren’t enough?
Extend the if structure

Uses the elif (else if) keyword
Adds another conditional block
Again must be indented

This is useful for complex conditions
Back to the previous example. . .

35 / 54



Sequences, Branches, and Loops

1 money = 10
2
3 if money == 10:
4 print("Buy two!")
5 elif money >= 5:
6 print("You have enough ")
7 else:
8 print("Not enough ")

money = 10

money 
== 10

FalseTrue

money 
>= 5

FalseTrue
Line 4

Line 6 Line 8

36 / 54



Sequences, Branches, and Loops

Looping Instructions

Allows us to repeat a block of code
Iteration

Basic form uses the while keyword
Checks the condition at the being of each iteration
Executes the body of the loop while that condition is true
Usually update the condition in the body of the loop to exit
Loop body must be indented

Need to be careful of infinite loops!
We’ll cover loops in more detail next week
Example: printing numbers. . .

37 / 54



Sequences, Branches, and Loops

1 index = 0
2
3 while index <10:
4 print ("Index = " + index)
5 index = index +1

index = 0

index <10

print(“Index = ” + index)

True

False

index = index +1

38 / 54



Python Detail

39 / 54



Operators

Arithmetic Operators

Add: x + y

Minus: x - y

Multiply: x * y

Divide: x / y

40 / 54



Operators

Assignments and Comparisons

Assignment: x = 10
Increment: x += 1

(x = x + 1)

Decrement: x -= 1

(x = x - 1)

Equal To: x == 10

Not Equal To: x != 10

Greater Then (Or Equal to): x > 10 (x >= 10)
Less Than (Or Equal to): x < 10 (x <= 10)

41 / 54



Operators

Assignments and Comparisons

Assignment: x = 10
Increment: x += 1 (x = x + 1)
Decrement: x -= 1 (x = x - 1)

Equal To: x == 10

Not Equal To: x != 10

Greater Then (Or Equal to): x > 10 (x >= 10)
Less Than (Or Equal to): x < 10 (x <= 10)

41 / 54



Operators

Boolean Operators

not x : Negates (toggles) the value
not True = False
not False = True

x and y : True if both values are True
True and True = True
False and False = False
(True and False) = (False and True) = False

x or y : True if at least one value is True
True or True = True
False or False = False
(True or False) = (False or True) = True

42 / 54



Variables

Type Conversions
We can try to convert between types

String : str(x)
str(3) : "3"

Integer : int(x)
int(3.14) : 3

Float : float(x)
float(3) : 3.0

43 / 54



Variables

Strings

String is a sequence of characters
Either "Hello World" or ’Hello World’
Join (concatenate) "Hello" + "World"

A character is represented ‘internally’ by a unique code
ASCII — American Standard Code for Information Interchange
UniCode

We can convert between characters and their code
ord(‘a’) – 97
chr(97) – ’a’

44 / 54



Variables

String Escape Characters

Some characters we can’t type
Use (\) to escape normal typing and produce special
characters:

\n — New Line
\’ or \" — single or double quote mark

45 / 54



User Input

Getting User Input

We often need some user input to make our programs
useful. . .

Which branch to take?
When to stop looping?

46 / 54



User Input

Python User Input

In Python we can use the input() function
result = input("Type Something Please")

Always returns a string
If we want an integer: result = int(input("..."))
Fails if the input isn’t an integer. . .

Looking at that later
And come back to it in future weeks

47 / 54



Python Programming Style

Keywords

Python has certain keywords that are reserved
Built-in and mean something specific
We can’t use them for anything else

We’ve already seen some
True
False
if
else
while

48 / 54



Python Programming Style

Programming Style

Python groups blocks of code by how indented they are
Can be tabs or spaces. . .
Pick one and stick to it

Blank lines to separate large blocks of code
Good practice to aid readability

49 / 54



Summary

50 / 54



Summary

Summary

Computers are stupid
Programming: giving a computer instructions
Key Skills:

Decomposition of problems
Modelling and solving problems in abstract terms
Trial and Error (Trying, Failing, Fixing)

Introduced Basic Programming Building Blocks
Introduced Basic Python

51 / 54



Summary

Practicals

Each week’s practicals
Examples how how to use the basic tools of programming
Recognise the pattern and solve similar problems

Course Website: mluckcuck.github.io/python/
Manual: docs.python.org/3/library/

Make sure you use Version 3!

52 / 54

mluckcuck.github.io/python/
docs.python.org/3/library/


Summary

Practicals This Week

Introduction to
Variables
Branching and Looping

53 / 54



Summary

Course Topics

1 Introduce Programming and Python
2 More Loops, Basic Sequences, and Functions
3 More Complex Data Types, Handling Errors, File Handling
4 Algorithms using Graphs
5 Two Week Project

Design
Program

54 / 54


	What Is Programming?
	Programming Languages
	Programming Process
	Python
	Python Detail
	Summary

