Matt Luckcuck

5th of October 2017

1/26

m Loops
m Lists

m Functions

2/26

m More Sequences

m List Recap
m Strings
m Tuples

m More Functions

3/26

4/26

Sequences

List Recap

m A sequence is an ordered set of data
m Last week: lists - a basic sequence type
m colours = ["Red", "Blue", "Green"]

m Lists can be changed. ..

m We say they are mutable
m colours[0] = "Purple"
m colours.append("Orange")

5/26

Sequences

List Recap

m A sequence is an ordered set of data

m Last week: lists - a basic sequence type

m colours = ["Red", "Blue", "Green"]
|

Lists can be changed. ..

m We say they are mutable

m colours[0] = "Purple"

m colours.append("Orange")

m colours = ["Purple", "Blue", "Green", "Orange"]

5/26

Sequences

Nested Lists

m We can have nested lists
m Each item of the list... is a list

m gameBoard = [[1,2,3], [1,2,3], [1,2,3]]
m This is a 2-dimensional List

m We could have 3... n dimensional Lists

m To loop through every element in an n-dimensional list, we
need n loops

m For a 2-d list like gameBoard we need two loops

6 /26

Sequences

List
m Support some operations common to sequences
m colours = ["Purple", "Blue", "Green", "Orange"]
m Indexing — colours [0]

m Length — len(colours)
m Slicing—s[0:2]

7/26

Sequences

List
m Support some operations common to sequences
m colours = ["Purple", "Blue", "Green", "Orange"]
m Indexing — colours [0]
m Length — len(colours)
m Slicing—s[0:2]
m ["Purple", "Blue"]

7/26

Sequences

String

m Another sequence type
m Each character is zero-indexed by a number

m s = "Purple"

m Allows some sequence operations:
m Indexing — s [0]

m Slicing—s [0:2]

m But Strings are immutable

8/26

Sequences

String

m Another sequence type
m Each character is zero-indexed by a number
m s = "Purple"

m Allows some sequence operations:
m Indexing — s [0]
m "P"
m Slicing—s [0:2]

m But Strings are immutable

8/26

Sequences

String

m Another sequence type
m Each character is zero-indexed by a number
m s = "Purple"

m Allows some sequence operations:
m Indexing — s [0]
m "P"
m Slicing—s [0:2]
m "Pu"

m But Strings are immutable

8/26

Sequences

Tuple

m Another ordered set of data
m Cannot be changed (immutable)
m We say this is immutable

m Zero-indexed like a list or string
mt = (170,52) Simple Tuple (Pair)

Sequences

Tuple

m Another ordered set of data
m Cannot be changed (immutable)

m We say this is immutable
m Zero-indexed like a list or string
mt = (170,52) Simple Tuple (Pair)
mt[0] is?

Sequences

Tuple

m Another ordered set of data
m Cannot be changed (immutable)

m We say this is immutable
m Zero-indexed like a list or string
mt = (170,52) Simple Tuple (Pair)
mt[0] is?

m 170

Sequences

Tuple

m Another ordered set of data

m Cannot be changed (immutable)
m We say this is immutable

Zero-indexed like a list or string
t = (170,52) Simple Tuple (Pair)
mt[0] is?
m 170
mt[1] is?

Sequences

Tuple

m Another ordered set of data

m Cannot be changed (immutable)
m We say this is immutable

Zero-indexed like a list or string
t = (170,52) Simple Tuple (Pair)
mt[0] is?
m 170
mt[1] is?
m 52

Sequences

Tuple

m Another ordered set of data
m Cannot be changed (immutable)
m We say this is immutable

Zero-indexed like a list or string
t = (170,52) Simple Tuple (Pair)
mt[0] is?
m 170
mt[1] is?
m 52
m What about t [0] = 77

Sequences

Tuple

Another ordered set of data
Cannot be changed (immutable)

m We say this is immutable

t =

Zero-indexed like a list or string

(170,52) Simple Tuple (Pair)

mt[0] is?

170

mt[1] is?

52

m What about t [0] = 77

: "tuple"object does not support item
assignment

9/26

Sequences

Tuples

m Useful for passing around related data

m Height and Weight (Pair)
m X, Y, and Z coordinates (Triple)
m Car tyre pressures (4 Tuple)

m Again, using them is a design decision

10

26

11/26

Last Time. ..

Function

m Block of code wrapped up that does something for us
m Function defined with: def funcName() :
m Function called using funcName ()

m Function body is an indented block

m We've seen some built-in functions:

m print()
m len()
m range()

12/26

1/ def add(a, b):

2 """ Adds a to b """
3 return a+b
4
5

result = add(2,2)

13/26

Last Time. ..

Function

m We can pass data into a function. ..
m Called parameters

m Functions can read variables defined outside
m More one this next week. ..

m Function may pass us back some data. ..

m Called the return value
m Imagine the return value replacing the call to the function

m Functions with no return statement return None
m None is a type that represents nothing

14 /26

Functions

Functions and Variable Scope

m Variables defined outside of a function are global
m Variables defined inside a function are local to the function
m Use return to pass variables out of a function

m This is known as a variable's scope

1 def func1l():
2 varl = 10
3 print(varl) # this wont work

15/26

Functions

Functions and Variable Scope

B WN =

Variables defined outside of a function are global
Variables defined inside a function are local to the function
m Use return to pass variables out of a function

This is known as a variable's scope

def funcl():
varl = 10
print(varl) # this wont work

: name ’varl’is not defined
var2 = 10

def func2():
print (var2) # this is fine

15

26

m A local variable can share the name of a global variable
m But the global variable keeps its value

var3 = 10

def func3():
var3 = 20
print (var3) # prints 20

func3 ()
print (var3) # prints 10

O ~NO O WN -

16 /26

Global variables can be used inside a function
m But, needs global keyword if we want to alter it

var4d = 10

def func4():

var4d = var4 + 10 # Wont work

17/26

Functions

Functions and Scope

m Global variables can be used inside a function
m But, needs global keyword if we want to alter it

1 vard4d = 10

2

3/ def func4():
4

5

var4d = vard4d + 10 # Wont work

m UnboundLocalError:local variable ’var4’referenced
before assignment

17 /26

a s W N -

m Global variables can be used inside a function
m But, needs global keyword if we want to alter it

var4d = 10

def func4():
global var4
var4d = var4d + 10 # Now it’s fine

18/26

m Usually one value. ..

m E.g. return x
m Called single return

var5 = 10

def funcb(var):
return var + 10

var5 = funcb(var5)
print (varb) # prints 20

~NOoO o hs WwN =

19/26

Functions

Return Values

m But Python allows multiple returns
m return x, y
m a, b = multiReturnFunc()

m Technically this is returning a tuple
m This can be useful, but. ..
m Be careful it doesn’t get too confusing

m Not always available in other languages, so don't rely on it
m What data type could we use to return multiple values?

20 /26

Functions

Return Values

m But Python allows multiple returns
m return x, y

m a, b = multiReturnFunc()

m Technically this is returning a tuple
m This can be useful, but. ..

m Be careful it doesn’t get too confusing

m Not always available in other languages, so don't rely on it
m What data type could we use to return multiple values?
m List

20/26

Functions

Return Values

m But Python allows multiple returns
m return x, y

m a, b = multiReturnFunc()

m Technically this is returning a tuple
m This can be useful, but. ..

m Be careful it doesn’t get too confusing

m Not always available in other languages, so don't rely on it
m What data type could we use to return multiple values?
m List

m Tuple(s) Explicitly

20/26

Functions

Return Values

m But Python allows multiple returns
m return x, y

m a, b = multiReturnFunc()

m Technically this is returning a tuple
m This can be useful, but. ..

m Be careful it doesn’t get too confusing

m Not always available in other languages, so don't rely on it
m What data type could we use to return multiple values?

m List

m Tuple(s) Explicitly

m There are others

20/26

Functions

Manipulating Parameters

m Function parameters are ‘passed by value’

m Value of a number is the number
m Value of a list is a reference to the list

m What does this mean for us?

21/26

~NOoO s W=

m Passing a number. ..

m Function updates number. ..

m Original is unaltered

varb = 10

def funch(var):
return var + 10

funcb (var5b)
print (var5) # prints 10

22/26

m Passing a list. ..

m Function updates the list
m The global copy will be updated

var6 = [10,20,30]

def func6(thelist):
theList .append (40)

func6 (var6)
print (var6) # prints [10, 20, 30, 40]

~NOoO s W=

23/26

Functions

Final Word. . .

While you're getting your head around this. ..

Stick to reading variables defined outside your function

[
[
m Passing parameters into your function, and
m Returning values from your function

[

Avoid writing to global variables

24 /26

25 /26

Summary

Summary

m Sequences are ordered collections of items
m List

m Tuple
m New sequence type

String
In-Depth of how Functions Work

Exercises

m global Variable Swap

m Mine Detector

26 /26

	More Sequences
	More Functions
	Summary

