
Python Building Blocks

There are some basic building blocks of programming. This sheet will show you what they look like
in Python. Things surrounded by < > are meant to be replaced when you type out the statement.
For example, you might want to print something to the screen. The pattern for that looks like
print(<text>) and you might replace that with print("Hello World").

Printing to the Screen

print(<text>)

Prints the < text> to the screen.

Variables

< name> = < value> <value><name>

Assigns the < value> to the variable called < name> . This makes a new variable if one called
< name> doesn’t already exist.

Branches

Single-Condition

1 if <condition>:

2 <if block>

3 else:

4 <else block>

<if block>

<condition>

<else block>

<condition>
is False

<condition>
is True

Runs the < if block> if the < condition> is true, runs the < else block> if the < condition> is
false.

1 Matt Luckcuck 2017

Multiple-Condition

1 if <condition1>:

2 <if block>

3 elif <condition2>:

4 <elif block>

5 else:

6 <else block>
<condition2>

<elif block> <else block>

<if block>

<condition1>

<condition1>
is False

<condition1>
is True

<condition2>
is True

<condition2>
is False

Runs the < if block> if < condition1> is true, runs the < elif block> if < condition1> is false
and < condition2> is true, and runs the < else block> if both < condition1> and < condition2>

are false.

Loops

While Loop

1 while <condition>:

2 <while block>

<while block>

<condition>
is True

<condition>
is False

<condition>

Checks the < condition>, runs the < while block> if the < condition> is true, then checks the
< condition> again. This continues until the < condition> is false.

2 Matt Luckcuck 2017

For Loop

1 for <item> in <sequence>:

2 <for block>

True

False
index <

len(<sequence>)

index = 0

<item> = <sequence>[index]

<for block>

index = index +1

Runs the < for block> for each < item> that is in the < sequence>. Each time it runs < for

block> the < item> will be the next item in the < sequence>. So we can say that it runs while
there are more items in the sequence.

We can imagine that we make a variable index = 0. Then, if index is less than the length of the
< sequence>, we set < item> to < sequence> [index] and run the < for block>. If the index is
greater than or equal to the length of the < sequence>, then we exit the loop. Finally, we add one
to index and loop back to check if index is still less than the length of the sequence.

Functions

1 def <name>(<parameters>):

2 <function body>

Defines a function called < name> that takes a list of < parameters> (if you don’t need any pa-
rameters, then you can just type def <name>(): which are the data you want to pass into the
function. For example, the print("Hello World") function takes a parameter that it prints to the
screen. Here, that parameter is the string "Hello World"

1 <name>()

When you call a function, by typing its name as shown above, the runs and then we return to where
the function was called. If the contains a return statement, then you can imagine that the call to
the function is replaced by whatever value the function returns. For example, a call to a function
that adds two numbers might look like add(2,2), which would return the value 4.

3 Matt Luckcuck 2017

