
Computer Code for Beginners
Week 2

Matt Luckcuck

28/09/2017

1 / 51

Course Outline

Course Topics

Introduce Programming and Python

More Loops, Lists and Basic Functions

More Sequences and Functions

More Complex Data Types

Handling Errors, File Handling

Larger Two-Module Program

2 / 51

Housekeeping

Housekeeping

Toilets

Fire Alarm

Additional Support

3 / 51

Housekeeping

Absences and Information

Fulford School

Tel: 01904 611 505

Email: fulford.adulted@york.gov.uk

Matt Luckcuck (Me)

Email: m.luckcuck@gmail.com

4 / 51

Housekeeping

Expectations

Keeping notes and language cheat-sheet

Paper or Electronic
Pages of notes
Flash cards
Spider diagram
Your own presentation slides

Independently searching for some information

Online is fine

Please ask questions if you’re unsure!

5 / 51

Housekeeping

Each Week. . .

∼ 40 minutes of lecture

∼ 15 minutes break

∼ 65 minutes of practical

6 / 51

Last Time

Previously. . .

Computers are stupid

Introduction to. . .

Variables
Sequential Instructions
Branching
Basic Loops

7 / 51

This Week

Outline

Recap

Decomposition

More Loops

Lists

Functions

Exercises Overview

8 / 51

Recap

9 / 51

Recap

Modules

A module is a collection of code that performs a function

In Python, each file is a module

Design decision. . .

A simple program is likely to be one module
A more complex program is best split up into separate modules

10 / 51

Recap

Functions

A block of code, wrapped up for us to use when we need it

Lots of built-in functions (like print())

We can write our own

Can take parameters (like print("Hello World"))

Can return values

Proper introduction to these later

11 / 51

Recap

Variable

Data that our program uses

Box in the computer’s memory with a value inside

Label to remember what’s inside

name = value

Assigning a value to the name

So naming variables well is important!

12 / 51

Recap

Variable Types

Whole Numbers — Integers (eg 1 or 10)

Decimal Numbers — Floating Point Numbers (eg 3.14)

Boolean (True or False)

String of characters (Text)

Others. . .

13 / 51

Recap

Boolean Operators

not x

Negates (toggles) the value

x and y

True if both values are True

x or y

True if at least one value is True

14 / 51

Recap

Strings

String is a sequence of characters

Either "Hello World" or ’Hello World’

A character is represented ‘internally’ by a unique code

UniCode

We can convert between characters and their code

ord(‘a’) – 97

chr(97) – ’a’

15 / 51

Recap

Sequential Instructions

A program is a sequence of instructions. . .

Unless we tell it otherwise

Sequential instructions are a basic building block

But often too simple

16 / 51

Recap

Branching Control Structure

Choice between one branch or another branch

Based on a boolean condition

1 if <condition>:

2 <if block>

3 else:

4 <else block>

Two blocks that are executed conditionally
Blocks must be indented

17 / 51

Recap

Looping Instructions

Allows us to repeat a block of code

Iteration

1 while <condition>:

2 <body>

Checks the condition at the being of each iteration
Executes the body of the loop while that condition is true
Loop body must be indented

Need to be careful of infinite loops!

18 / 51

Recap

Python User Input

In Python provides the input() function

result = input("Type Something Please")

19 / 51

Python Programming Style

Programming Style

Python groups blocks of code by how indented they are

Can be tabs or spaces. . .
Pick one and stick to it

20 / 51

Recap

Good Practice

Code Comments

A single-line comment

Good for describing complicated code
Not an excuse for poor naming!
Also useful for temporarily removing a line

Documentation

String on first line of a module or function
""" describe what it does """

Again, not an excuse for bad naming!

Useful for people reading your code in the future

Which could be future-you!

21 / 51

Decomposition

22 / 51

Decomposition

Values and Expressions

The variable swap exercise shows us two ways of assigning
variables

Literal value (x = 10)

Expressions (temp = x)

Literal values assign the number (or string, etc) to the variable

Expressions are evaluated to get their value

Evaluating a variable name gives us it’s value

In temp = x we get the value of x and store it in temp

The same happens if we use (e.g.) result = input("...")

This example also introduces decomposition. . .

23 / 51

Decomposition

Decomposition Example

Variables are a box in
memory

We want to swap the
contents of these
boxes. . .

We need to break it
down into steps

10x

20y

24 / 51

Decomposition

Decomposition Example

All we can do with x and
y is overwrite them

So we make a new
temporary variable

10x

20y

temp

25 / 51

Decomposition

Decomposition Example

We can ‘overwrite’ temp

Banks the value of x

10x

20y

10temp

temp = x

26 / 51

Decomposition

Decomposition Example

Then we can overwrite x

Note the value of x is
still safe in temp

20x

20y

10temp

x = y

27 / 51

Decomposition

Decomposition Example

Overwrite y

Using temp

20x

10y

10temp

y = temp

28 / 51

Decomposition

Another Decomposition Example

Logo Shapes

We know how to draw a triangle

But the computer needs each step explained to it

Forward. . .
Turning. . .

29 / 51

Decomposition

Decomposition Examples

Example of step-by-step instructions that computers need

Computer is a tool

Don’t run the program in your head, make the computer do
the work

Learning how to do this takes some time

30 / 51

(More) Loops and Lists

31 / 51

Looping

Iteration (Looping)

We looked at looping last week

1 while <condition>:

2 <body>

This basic version loops while b == True

Python (and other languages) have another type of loop, the
for loop

32 / 51

Looping

For Loops

Repeat code for a certain number of times. . .

Python does this by looping over a sequence

Simplest example is a list: [1,2,3]

1 for i in theList:

2 <body>

Loops for each item in theList

Or while there are more items in the list

For each item in the list, we run the < body>

i (the loop index) is incremented each iteration

Each iteration, i points at the next item

33 / 51

Lists

Lists Intro

Compound data type

Sequence

Simple ordered sequence of items

numbers = [3,7,2]

colours = ["Red", "Blue", "Green"]

Zero-Indexed by sequential numbers

[0 7→"Red", 1 7→"Blue", 2 7→ "Green"]

Highest index is length − 1

34 / 51

Lists

List Index

Access item using index

aList[0] is first item in aList

numbers = [3,7,2]

colours = ["Red", "Blue", "Green"]

E.g. numbers[0] is?

3

What about colours[1] ?

Blue

What about colours[3] ?

IndexError: list index out of range

35 / 51

Lists

List Index

Access item using index

aList[0] is first item in aList

numbers = [3,7,2]

colours = ["Red", "Blue", "Green"]

E.g. numbers[0] is?

3

What about colours[1] ?

Blue

What about colours[3] ?

IndexError: list index out of range

35 / 51

Lists

List Index

Access item using index

aList[0] is first item in aList

numbers = [3,7,2]

colours = ["Red", "Blue", "Green"]

E.g. numbers[0] is?

3

What about colours[1] ?

Blue

What about colours[3] ?

IndexError: list index out of range

35 / 51

Lists

List Index

Access item using index

aList[0] is first item in aList

numbers = [3,7,2]

colours = ["Red", "Blue", "Green"]

E.g. numbers[0] is?

3

What about colours[1] ?

Blue

What about colours[3] ?

IndexError: list index out of range

35 / 51

Lists

List Index

Access item using index

aList[0] is first item in aList

numbers = [3,7,2]

colours = ["Red", "Blue", "Green"]

E.g. numbers[0] is?

3

What about colours[1] ?

Blue

What about colours[3] ?

IndexError: list index out of range

35 / 51

Lists

List Index

Access item using index

aList[0] is first item in aList

numbers = [3,7,2]

colours = ["Red", "Blue", "Green"]

E.g. numbers[0] is?

3

What about colours[1] ?

Blue

What about colours[3] ?

IndexError: list index out of range

35 / 51

Lists

List Index

Access item using index

aList[0] is first item in aList

numbers = [3,7,2]

colours = ["Red", "Blue", "Green"]

E.g. numbers[0] is?

3

What about colours[1] ?

Blue

What about colours[3] ?

IndexError: list index out of range

35 / 51

Lists

Useful List Operations

theList = [] – makes a new empty list

theList[3] = 10 – updates index 3 to 10

len(theList) – gives the length of theList

Note that the length is one more than the highest index
len() works for other data types too

x in theList – True if x is in theList

theList.append(10) – adds 10 to the end of thelist

theList.remove(10) – removes the first 10 in theList

36 / 51

Looping

For Loops

If we know the number of times we want to repeat our loop. . .

We can use the range(x) function
Returns a sequence of numbers x items long

Be careful about the actual numbers

1 for i in range(10):

2 print(i)

Prints 0 – 9

37 / 51

Looping

For Loops

If we know the number of times we want to repeat our loop. . .

We can use the range(x) function
Returns a sequence of numbers x items long
Be careful about the actual numbers

1 for i in range(10):

2 print(i)

Prints 0 – 9

37 / 51

Looping

For Loops

If we want to control the loop index. . .

range(x, y) counts from x upto (but not including) y

1 for i in range(1, 11):

2 print(i)

Prints 1 – 10

38 / 51

Looping

For Loops

If we want to look at every item in a list. . .

Use the same form but replace the range() call with our list

1 colours = ["Red", "Blue", "Green"]

2 for item in colours:

3 print(item)

Prints Red, Blue, and Green

39 / 51

Looping

For Loops

If we want to look at every item in a list. . .

Use the same form but replace the range() call with our list

1 colours = ["Red", "Blue", "Green"]

2 for item in colours:

3 print(item)

Prints Red, Blue, and Green

39 / 51

Functions

40 / 51

Functions

Function

Block of code wrapped up that does something for us

Function defined with: def funcName():

Function called using funcName()

Function body is an indented block

Naming is important

Documentation string

""" Describes what the function does """

We’ve seen some built-in functions:

print()

len()

range()

41 / 51

Functions

Function

We can pass data into a function. . .

Called parameters

Functions can read variables defined outside

More one this next week. . .

Function may pass us back some data. . .

Called the return value
Imagine the return value replacing the call to the function

Functions with no return statement return None

None is a type that represents nothing

42 / 51

Functions

Function Call Example

Simple function to add two numbers

returns the sum of a and b

a and b are whatever numbers we pass into the function
Function calls are expressions, so they’re evaluated

1 def add(a, b):

2 """ Adds a to b """

3 return a+b

4
5 result = add(2,2)

43 / 51

Functions

Function Call Example

Simple function to add two numbers

returns the sum of a and b

a and b are whatever numbers we pass into the function
Function calls are expressions, so they’re evaluated

1 def add(2, 2):

2 """ Adds a to b """

3 return a+b

4
5 result = add(2,2)

44 / 51

Functions

Function Call Example

Simple function to add two numbers

returns the sum of a and b

a and b are whatever numbers we pass into the function
Function calls are expressions, so they’re evaluated

1 def add(2, 2):

2 """ Adds a to b """

3 return 2+2

4
5 result = add(2,2)

45 / 51

Functions

Function Call Example

Simple function to add two numbers

returns the sum of a and b

a and b are whatever numbers we pass into the function
Function calls are expressions, so they’re evaluated

1 def add(2, 2):

2 """ Adds a to b """

3 return 4

4
5 result = add(2,2)

46 / 51

Functions

Function Call Example

Simple function to add two numbers

returns the sum of a and b

a and b are whatever numbers we pass into the function
Function calls are expressions, so they’re evaluated

1 def add(2, 2):

2 """ Adds a to b """

3 return 4

4
5 result = 4

47 / 51

Functions

Why?

Code reuse

Simplifying the main program

Single point of change

48 / 51

Summary

49 / 51

Summary

Summary

For loops

for i in range(10):

for i in aList:

Lists

Ordered sequences of values
Zero-indexed by numbers

Functions

Wrapping up a block of code
def name():

Naming is important!

50 / 51

Summary

Practicals

Logo Shapes2 (with Loops)

Day of the Week Lists

Random Number Guessing Game

Caesar Cipher

Course Website: mluckcuck.github.io/python/

Manual: docs.python.org/3/library/

Make sure you use Version 3!

51 / 51

mluckcuck.github.io/python/
docs.python.org/3/library/

	Recap
	Decomposition
	(More) Loops and Lists
	Functions
	Summary

