
Computer Code for Beginners
Week 6

Matt Luckcuck

26th October 2017

1 / 34

Outline

Previously. . .

Dictionaries

This Time. . .

Exceptions

File Handling

JSON Format

2 / 34

Exceptions

3 / 34

Exceptions

Exceptions Intro

Errors that occur during execution are not always fatal

E.g TypeError and NameError

We can ‘handle’ them

Code is said to ‘raise’ or ‘throw’ an exception

4 / 34

Exceptions

Exceptions We’ve Already Seen

1 total = 10

2 print("Total = " + total)

3 TypeError: Can’t convert ‘int’ object to str

implicitly

1 var = x + 3

2 NameError: name ‘x’ is not defined

5 / 34

Exceptions

Exceptions in For Loops

1 for item in aList:

2 print(item)

When there are no more items in aList. . .

An IndexError is raised

6 / 34

Exception Handling

How?

Be aware of code that might throw an exception

Python provides some extra keywords:

try

except

finally

7 / 34

Exception Handling

How?

Problematic code goes inside a try: block

Try and run this code

Code to handle an exception goes in an except: block

If there’s an exception in the try block, run this code
Any exception or a specific exception

E.g. except TypeError:

E.g. except NameError as e:

May use more than one per try

8 / 34

Exception Handling

Optional Extras

Use an else: block to execute code only if there it no
exception

A finally: block is

Always executed as the last part of a try statement
Executes whether there’s an exception or not

9 / 34

Exception Handling

1 try:

2 <problematic code>

3 except:

4 <handle it>

5 else:

6 <no exception>

7 finally:

8 <code to cleanup>

Next Line of
try Block

More
Lines?

Exception?

except block else block

Yes

Yes

No

No

finally block

10 / 34

Exception Handling

Exception Example

1 result = int(input("Input a Number"))

2 print(result)

What if the user doesn’t input a number. . .

‘Octopus’

ValueError: invalid literal for int()with base 10

:‘Octopus’

11 / 34

Exception Handling

Exception Example

1 result = int(input("Input a Number"))

2 print(result)

What if the user doesn’t input a number. . .

‘Octopus’

ValueError: invalid literal for int()with base 10

:‘Octopus’

11 / 34

Exception Handling

Exception Example

1 result = int(input("Input a Number"))

2 print(result)

What if the user doesn’t input a number. . .

‘Octopus’

ValueError: invalid literal for int()with base 10

:‘Octopus’

11 / 34

Exception Handling

Exception Example

1 try:

2 result = int(input("Input a Number"))

3 print(result)

4 except ValueError:

5 print("Not a number")

Run the code in the try block. . .

If there is a ValueError then

Jump to the except block

12 / 34

Exception Handling

Exception Example

1 try:

2 result = int(input("Input a Number"))

3 except ValueError:

4 print("Not a number")

5 else:

6 print(result)

Run the code in the try block. . .

If there is a ValueError then

Jump to the except block

If there was no exception

Run the else block, after the try

13 / 34

Exception Handling

When?

Handling exceptions is similar to using a if: ... else:

Checking for what could cause an exception
But checks line-by-line

Important to make sure you don’t cause more exceptions

E.g Handle an exception so that a function returns what is
expected of it

Design Decision. . .

Slight performance overhead, compared to if : ... else:

The ‘Python way’ is to try then recover if you fail
Use them if exceptions would make your code cleaner or safer

14 / 34

Files

15 / 34

File Handling

Files

Another useful thing we can write programs to do

Python allows us to do this very simply:

f = open("theFile.txt","r") – Read mode
f = open("theFile.txt","w") – Write mode
Now f points at the file we opened

16 / 34

File Handling

File Reading

After opening a file we can read from it. . .

As a string:
f.read()

Reads the whole file (careful of file size)

f.readline()

Reads one line, terminated by newline (‘\\n’)

As a list:
f.readlines()

Reads all the lines into a list (keeping newline characters)

f.read().splitlines()

Nice way of getting a list of ‘clean’ strings (no newline)

17 / 34

File Handling

File Reading

We can also use a loop. . .

1 f = open("theFile.txt","r")

2
3 for line in f:

4 print(line)

18 / 34

File Handling

File Writing

After opening a file we can write to it. . .

f.write(‘This is a test \\n’)

Note the new line character
Without it, the next write would be on the same line

19 / 34

File Handling

File Reading

Once we’re done with the file. . .

f.close()

Close the file (always)

20 / 34

File Handling Exceptions

File Exceptions

File handling is a very good place to use exceptions. . .

We can check if a file exists before opening it. . .
But the file could be deleted before we open it

A FileNotFoundError is raised if we try to open a
non-existent file

Catching this exception is very good practice
Very specific problem, could catch OSError instead. . .

Remember that the file needs closing once we’re done

If it was successfully opened
Use else block

21 / 34

File Handling Exceptions

Example

1 f = open("theFile.txt","r")

2
3 for line in f:

4 print(line)

5
6 f.close ()

22 / 34

File Handling Exceptions

Example

1 try:

2 f = open("theFile.txt","r")

3 except FileNotFoundError as err:

4 print(err)

5 else:

6 for line in f:

7 print(line)

8 f.close ()

23 / 34

File Handling

File Handling

Formatting of the data in a file is important

Strings and numbers as easy enough. . .

How do we represent:

Lists?
Dictionaries?

We can use a standard data format to help

24 / 34

File Handling

JSON

JavaScript Object Notation

Language-independent data exchange format
Based on JavaScript

Built on:

Object: Unordered collection of key, value pairs (Dictionary)
Array: Ordered sequence of values (List)

Also has:

Boolean
String
Numbers

25 / 34

File Handling

JSON in Detail

Object: { "key":value, "key":value }
Keys must be strings

Array: [value, value, value]

Values:

String
Number
Object
Array
True
False
Null (like None)

More detail online: json.org

26 / 34

File Handling

JSON in Python

Python has a json library

import json

Open the file. . .

Decode (read) json

json.load(jsonFile)

Encode (write) json

json.dump(data, file)

Both have string equivalents:

Decode from a string json.loads(jsonString)

Encode to a string json.dumps(data)

27 / 34

File Handling

JSON in Python

1 #file.json

2 {"Octopus":42 ,"cat": 5}

1 import json

2
3 f = open("file.json")

4 d = json.load(f)

5 print(d) #{"Octopus ":42 ,"cat": 5}

28 / 34

File Handling

JSON in Python

Be careful:
json.decoder.JSONDecodeError while decoding

Good practice to catch this exception

Python tuples are encoded as lists

29 / 34

Summary

30 / 34

Summary

Summary

Exceptions

try: and except:

Good practice to catch errors that you anticipate
Be careful not to cause other exceptions from handling

File Handling

Reading and writing
Potential for FileNotFoundError

JSON Format

Simple text-based file format
Really useful for data persistence
Potential for json.decoder.JSONDecodeError

31 / 34

Summary

Exercises

Longest Word (in a File)

Letters in a File

Mine Detector (But with files!)

32 / 34

Summary

Final Week

More Computer Code course

Top of Course Website for:

Learner Plans (post-course)
Feedback Forms

33 / 34

Summary

More. . .

Online Programming Courses. . .

Raspberry Pi Projects

Code Club

Hacking Your Own Project Together

projects.raspberrypi.org

Computerphile

www.youtube.com/user/Computerphile

General computer science topics from University of Nottingham

The Digital Human

http://www.bbc.co.uk/programmes/b01n7094

Digital Technology and its interaction with society

34 / 34

projects.raspberrypi.org
www.youtube.com/user/Computerphile
http://www.bbc.co.uk/programmes/b01n7094

	Exceptions
	Files
	Summary

