Matt Luckcuck

28/09/2017

1/51

Course Outline

Course Topics

Introduce Programming and Python
More Loops, Lists and Basic Functions
More Sequences and Functions

More Complex Data Types

Handling Errors, File Handling

Larger Two-Module Program

51

m Toilets
m Fire Alarm

m Additional Support

3/51

Housekeeping

Absences and Information
Fulford School

m Tel: 01904 611 505

m Email: fulford.adulted®@york.gov.uk
Matt Luckcuck (Me)

m Email: m.luckcuck@gmail.com

51

Housekeeping

Expectations

m Keeping notes and language cheat-sheet

m Paper or Electronic

Pages of notes

Flash cards

Spider diagram

Your own presentation slides

m Independently searching for some information
m Online is fine

m Please ask questions if you're unsure!

51

m ~ 40 minutes of lecture
m ~ 15 minutes break

m ~ 65 minutes of practical

6/51

m Computers are stupid
m Introduction to. ..
m Variables
m Sequential Instructions
m Branching
m Basic Loops

7/51

m Recap

m Decomposition
m More Loops

m Lists

m Functions

|

Exercises Overview

8/51

9/51

Recap

Modules

m A module is a collection of code that performs a function
m In Python, each file is a module

m Design decision. ..

m A simple program is likely to be one module
m A more complex program is best split up into separate modules

10

51

Recap

Functions

A block of code, wrapped up for us to use when we need it
Lots of built-in functions (like print ())

We can write our own

[
[
[
m Can take parameters (like print ("Hello World"))
m Can return values

[

Proper introduction to these later

11/51

Recap

Variable

Data that our program uses
Box in the computer’'s memory with a value inside

Label to remember what's inside

name = value
m Assigning a value to the name

So naming variables well is important!

12/51

Recap

Variable Types
m Whole Numbers — Integers (eg 1 or 10)
Decimal Numbers — Floating Point Numbers (eg 3.14)

String of characters (Text)

m
m Boolean (True or False)
m
m Others. ..

13/51

m not x

m Negates (toggles) the value
B X and y

m True if both values are True
BXory

m True if at least one value is True

14 /51

Recap

Strings

m String is a sequence of characters
m Either "Hello World" or ’Hello World’

m A character is represented ‘internally’ by a unique code
m UniCode

m We can convert between characters and their code
m ord(‘a’) —97
m chr(97) - 'a’

51

Recap

Sequential Instructions

m A program is a sequence of instructions. . .
m Unless we tell it otherwise

m Sequential instructions are a basic building block
m But often too simple

16

51

Recap

Branching Control Structure

m Choice between one branch or another branch
m Based on a boolean condition

1 if <condition>:
2 <if block>

3| else:

4 <else block>

m Two blocks that are executed conditionally
m Blocks must be indented

17 /51

Recap

Looping Instructions
m Allows us to repeat a block of code
m lteration
1 while <condition>:

2 <body>

m Checks the condition at the being of each iteration

m Executes the body of the loop while that condition is true
m Loop body must be indented

m Need to be careful of infinite loops!

18 /51

m In Python provides the input () function
m result = input("Type Something Please")

19/51

m Python groups blocks of code by how indented they are

m Can be tabs or spaces. ..
m Pick one and stick to it

20/51

Recap

Good Practice

m Code Comments

m # A single-line comment

m Good for describing complicated code

m Not an excuse for poor naming!

m Also useful for temporarily removing a line

m Documentation

m String on first line of a module or function
m """ describe what it does """
m Again, not an excuse for bad naming!

m Useful for people reading your code in the future
m Which could be future-you!

21/51

22/51

Decomposition

Values and Expressions

m The variable swap exercise shows us two ways of assigning
variables

m Literal value (x = 10)

m Expressions (temp = x)
m Literal values assign the number (or string, etc) to the variable
m Expressions are evaluated to get their value
m Evaluating a variable name gives us it's value

m In temp = x we get the value of x and store it in temp
m The same happens if we use (e.g.) result = input("...")

m This example also introduces decomposition. . .

Decomposition

Decomposition Example

m Variables are a box in
memory

m We want to swap the
contents of these
boxes. . .

m We need to break it
down into steps

10

20

24 /51

Decomposition

Decomposition Example

m All we can do with x and
y is overwrite them

m So we make a new
temporary variable

y

10

20

temp

25 /51

temp = X

Decomposion Example x| 10

m We can ‘overwrite’ temp

temp | 10

m Banks the value of x

26 /51

Decomposition

Decomposition Example

m Then we can overwrite x

m Note the value of x is
still safe in temp

20

20

temp

10

27 /51

‘Decomposition Example

m Overwrite y

m Using temp

20

10

temp

y = temp

10

28 /51

Decomposition

Another Decomposition Example

m Logo Shapes

m We know how to draw a triangle
m But the computer needs each step explained to it

m Forward. ..
m Turning...

29 /51

Decomposition

Decomposition Examples

m Example of step-by-step instructions that computers need
m Computer is a tool

m Don't run the program in your head, make the computer do
the work

m Learning how to do this takes some time

30 /51

31/51

Looping

Iteration (Looping)

We looked at looping last week

1 while <condition>:
<body>

N

This basic version loops while b == True

Python (and other languages) have another type of loop, the
for loop

32 /51

Looping

For Loops

Repeat code for a certain number of times. ..
Python does this by looping over a sequence
m Simplest example is a list: [1,2,3]

for i in thelist:
<body>

Loops for each item in theList
m Or while there are more items in the list
For each item in the list, we run the <body>
i (the loop index) is incremented each iteration
m Each iteration, i points at the next item

33

Lists

Lists Intro

m Compound data type

m Sequence
m Simple ordered sequence of items
m numbers = [3,7,2]
m colours = ["Red", "Blue", "Green"]

m Zero-Indexed by sequential numbers

m [0—"Red", 1—"Blue", 2— "Green"]
m Highest index is length — 1

34 /51

m Access item using index
m alist [0] is first item in aList

35/51

m Access item using index
m alist [0] is first item in aList

m numbers = [3,7,2]

m colours = ["Red", "Blue", "Green"]
m E.g. numbers[0] is?

35/51

Lists

List Index

m Access item using index
m alist[0] is first item in aList
m numbers = [3,7,2]
m colours = ["Red", "Blue", "Green'"]

m E.g. numbers[0] is?
m 3

51

Lists

List Index

m Access item using index
m alist[0] is first item in aList

m numbers = [3,7,2]

m colours = ["Red", "Blue", "Green'"]
m E.g. numbers[0] is?
m 3

m What about colours[1]?

51

Lists

List Index

m Access item using index
m alist[0] is first item in aList

m numbers = [3,7,2]

m colours = ["Red", "Blue", "Green'"]
m E.g. numbers[0] is?
m 3

m What about colours[1]?
m Blue

51

Lists

List Index

m Access item using index
m alist[0] is first item in aList
m numbers = [3,7,2]
m colours = ["Red", "Blue", "Green'"]
m E.g. numbers[0] is?
m 3
m What about colours[1]7?
m Blue
m What about colours[3] 7

51

Lists

List Index

m Access item using index
m alist[0] is first item in aList
m numbers = [3,7,2]
m colours = ["Red", "Blue", "Green'"]
m E.g. numbers[0] is?
m 3
m What about colours[1]7?
m Blue
m What about colours[3] 7

[] : list index out of range

51

Lists

Useful List Operations

theList = [] — makes a new empty list
theList[3] = 10 — updates index 3 to 10

len(theList) — gives the length of theList

m Note that the length is one more than the highest index
m len() works for other data types too

x in theList — True if x is in thelList
theList.append(10) — adds 10 to the end of thelist

thelist.remove(10) — removes the first 10 in thelList

36 /51

m If we know the number of times we want to repeat our loop. ..

m We can use the range (x) function
m Returns a sequence of numbers x items long

[y

for i in range(10):
print (i)

N

37/51

Looping

For Loops

m If we know the number of times we want to repeat our loop. . .

m We can use the range (x) function
m Returns a sequence of numbers x items long
m Be careful about the actual numbers

1 for i in range(10):
2 print (i)

Prints 0 — 9

37/51

m If we want to control the loop index. . .
m range(x, y) counts from x upto (but not including) y

[y

for i in range(1l, 11):
print (i)

N

Prints 1 — 10

38/51

m If we want to look at every item in a list. ..
m Use the same form but replace the range () call with our list

[y

colours = ["Red", "Blue", "Green"]
for item in colours:
print (item)

w N

39/51

m If we want to look at every item in a list. ..
m Use the same form but replace the range () call with our list

[y

colours = ["Red", "Blue", "Green"]
for item in colours:
print (item)

w N

Prints Red, Blue, and Green

39/51

40/51

Functions

Function

m Block of code wrapped up that does something for us
m Function defined with: def funcName() :
m Function called using funcName ()

m Function body is an indented block

m Naming is important

m Documentation string
m """ Describes what the function does """

m We've seen some built-in functions:

m print()
m len()
m range()

41/51

Functions

Function

m We can pass data into a function. ..
m Called parameters

m Functions can read variables defined outside
m More one this next week. ..

m Function may pass us back some data. ..

m Called the return value
m Imagine the return value replacing the call to the function

m Functions with no return statement return None
m None is a type that represents nothing

42 /51

Functions

Function Call Example

m Simple function to add two numbers
m returns the sum of a and b

m a and b are whatever numbers we pass into the function
m Function calls are expressions, so they're evaluated

1/ def add(a, b):

2/ "vmv o Adds a to b """
3 return a+b
4
5

result = add(2,2)

43 /51

Functions

Function Call Example

m Simple function to add two numbers
m returns the sum of a and b

m a and b are whatever numbers we pass into the function
m Function calls are expressions, so they're evaluated

1/ def add(2, 2):

2/ "vmv o Adds a to b """
3 return a+b
4
5

result = add(2,2)

44 /51

Functions

Function Call Example

m Simple function to add two numbers
m returns the sum of a and b

m a and b are whatever numbers we pass into the function
m Function calls are expressions, so they're evaluated

1/ def add(2, 2):

2/ "vmv o Adds a to b """
3 return 2+2
4
5

result = add(2,2)

45 /51

Functions

Function Call Example

m Simple function to add two numbers
m returns the sum of a and b

m a and b are whatever numbers we pass into the function
m Function calls are expressions, so they're evaluated

1/ def add(2, 2):

2/ "vmv o Adds a to b """
3 return 4
4
5

result = add(2,2)

46

51

Functions

Function Call Example

m Simple function to add two numbers
m returns the sum of a and b

m a and b are whatever numbers we pass into the function
m Function calls are expressions, so they're evaluated

1/ def add(2, 2):

2/ "vmv o Adds a to b """
3 return 4
4
5

47 /51

m Code reuse
m Simplifying the main program

m Single point of change

48 /51

49 /51

Summary

Summary

m For loops
m for i in range(10):
m for i in alList:

m Lists

m Ordered sequences of values
m Zero-indexed by numbers

m Functions

m Wrapping up a block of code
m def name():
m Naming is important!

50 /51

Summary

Practicals

Logo Shapes2 (with Loops)

Day of the Week Lists

Random Number Guessing Game

Caesar Cipher

Course Website: mluckcuck.github.io/python/

Manual: docs.python.org/3/library/
m Make sure you use Version 3!

mluckcuck.github.io/python/
docs.python.org/3/library/

	Recap
	Decomposition
	(More) Loops and Lists
	Functions
	Summary

