
Requirement
ID

Requirement Text

R1
Under sensor faults, while tracking pilot commands, control objectives
shall be satisfied (e.g. settling time, overshoot, and steady state error will
be within predefined, acceptable limits

FRET Requirements Refactoring
Matt Luckcuck
Wed 25th Aug 2021

Requirements: EngineController

Starting File: MF-FRET-EngineControllerv1.0.json

Many of the requirements use repeated ideas, things like "sensor faults" or "control objectives",
which means that the requirements have a lot of repetition. This is the "Duplicated Activities"
problem [Ramos et al. 2007], which is similar to the smell of "Duplicated Code" [Refactoring,
Fowler 1999] but we can't apply the usual "Extract Method" refactoring because FRET
requirements are not Object-Oriented and FRET doesn't have anything analogous to a method, it
only have requirements.

So, to do this refactoring, we're going to have to use other requirements as the destination of the
extracted code (FRET requirements, in this case) and use the "Extract Requirement" refactoring
from [Ramos et al. 2007]. Since FRET doesn't type check what you give it, we can abuse the
notation slightly by saying if [extracted requirement] . We already do this in the parent

requirements, like UC5_R_1 = if ((sensorfaults) & (trackingPilotCommands))
Controller shall satisfy (controlObjectives) ; we've just dropped the text of the

requirement into FRET, relying on the fact that the we know the child requirements define what
sensorFaults , trackingPilotCommands , and controlObjectives mean. But FRET doesn't
care and raises no issue with UC5_R_1 or any of the other requirements.

We're going to break this process down into steps.

Step 1: Fragments of FRET
We refer to the repeated ideas/duplicated code as 'fragments' (mainly for the alliteration). These
fragments are currently baked into the requirements, so we need to extract them. In our example
there are several repeated patterns. The table below shows the first three requirements. For
example, requirement R1 specifies: "Under sensor faults, while tracking pilot commands, control
objectives shall be satisfied (e.g. settling time, overshoot, and steady state error will be within
predefined, acceptable limits"; and R3 specifies "Under sensor faults, while tracking pilot
commands, operating limit objectives shall be satisfied (e.g. respecting upper limit in shaft
speed)". Both of these requirements are active "Under sensor faults" and "while tracking pilot
commands". They only differ in that R1 sates that "control objectives" shall be satisfied, whereas
R3 states that "operating limit objectives" shall be satisfied.

af://n314
af://n316
af://n317
https://doi.org/10.5753/sbqs.2007.15573
https://doi.org/10.5753/sbqs.2007.15573
af://n321

Requirement
ID

Requirement Text

R2

Under sensor faults, during regulation of nominal system operation (no
change in pilot input), control objectives shall be satisfied (e.g. settling
time, overshoot, and steady state error will be within predefined,
acceptable limits)

R3
Under sensor faults, while tracking pilot commands, operating limit
objectives shall be satisfied (e.g. respecting upper limit in shaft speed)

Fragment ID Description

F1 Sensor Faults

F2 Tracking Pilot Commands

F3 Control Objectives

F4 Regulation Of Nominal Operation

F5 Operating Limit Objectives

F6 Mechanical Fatigue

F7 Low Probability Hazardous Events

The table below shows the seven repeated fragments that we discovered.

The figure below shows a dependency graph, mapping the requirements to the fragment they
depend on. These dependencies are hidden within the requirements, which makes maintaining
their definitions troublesome. First, we collect the parent requirements and the fragments into
two sets:

We then provide a relation between these two sets:

R1

R2

R3

R4

R5

R6

R7

R9

R11

R13

SensorFaults

TrackingPilotCommands

ControlObjectives

OperatingLimitObjectives

MechanicalFatigue

LowProbabilityHazardousEvents

R8

R10

R12

R14

RegulationOfNominalOperation

R1

R3

SensorFaults

TrackingPilotCommands

ControlObjectives

OperatingLimitObjectives

Specifically for our example of requirements R1 and R3, we have:

which produces the dependency graph below (simply a subset of the full graph above).

Step 2: Apply Extract Requirement
In FRETish, R1 becomes if ((sensorfaults) & (trackingPilotCommands)) Controller

shall satisfy (controlObjectives) . We then implemented R1 as three separate child

requirements, for example R1.1 when (diff(r(i),y(i)) > E) if ((sensorValue(S) >
nominalValue + R) | (sensorValue(S) < nominalValue - R) | (sensorValue(S) = null)

af://n373

& (pilotInput => setThrust = V2) & (observedThrust = V1)) Controller shall until

(diff(r(i),y(i)) < e) satisfy (settlingTime >= 0) & (settlingTime <=

settlingTimeMax) & (observedThrust = V2) , which contains the detailed specification of

sensorfaults (after the if and before Controller) and trackingPilotCommands (the

when() and untill() clauses) but only a partial specification of controlObjectives . In the
textual version of the requirements there are three control objectives listed, so the child
requirements were used to manage the complexity of the specification. However, this further
increases the complexity of maintaining the repeated fragments.

Sensor Faults

Applying the Extract Requirement refactoring to the sensor faults fragment was relatively simple,
because its definition is simply repeated across several requirements. This definition was
extracted to a new requirement SENSOR_FAULTS = where (sensorValue(S) > nominalValue +

R) | (sensorValue(S) < nominalValue - R) | (sensorValue(S) = null) Controller

shall satisfy SensorFaults .

After creating the new requirement, the original repeated definitions were replaced with a 'call' to
this new requirement. For example requirements R1 and R1.1 become:

R1 = if (SENSOR_FAULTS & (trackingPilotCommands)) Controller shall satisfy

(controlObjectives)

R1.1 = when (diff(r(i),y(i)) > E) if (SENSOR_FAULTS & (pilotInput => setThrust =

V2) & (observedThrust = V1)) Controller shall until (diff(r(i),y(i)) < e) satisfy

(settlingTime >= 0) & (settlingTime <= settlingTimeMax) & (observedThrust = V2)

Control Objectives

Applying the Extract Requirement refactoring to the control objectives fragment was a little more
difficult, because it's detailed definition was spread over several child requirements, but was still
achievable. Each of the child requirements that used controlObjectives (e.g. R1.1, R1.2, and
R1.3) contains the detail of one part of the controlObjectives : settling time, overshoot, or

steady state error, respectively.

Each of the part-specifications of controlObjectives was extracted into a single requirement

CONTROL_OBECTIVES and replaced the part-specifications in the child requirements with a 'call' to

the new requirement. For example requirements R1 and R1.1 become:

R1 = if (SENSOR_FAULTS & (trackingPilotCommands)) Controller shall satisfy

CONTROL_OBECTIVES

R1.1 = when (diff(r(i),y(i)) > E) if (SENSOR_FAULTS & (pilotInput => setThrust =

V2) & (observedThrust = V1)) Controller shall until (diff(r(i),y(i)) < e) satisfy

CONTROL_OBECTIVES & (observedThrust = V2)

Tracking Pilot Commands

The final fragment, tracking pilot commands, was more difficult to apply the Extract Requirement
refactoring to then the previous two fragments. This was because fragment specifies an interval
during which the requirement is active and so occurs in two places in the requirement: the
when() at the beginning and the until() just before the response/post-condition of the

requirement.

af://n375
af://n379
af://n383

To overcome this challenge, we applied Extract Requirement to each of these sub-fragments so
that the structure book-ending the application of the requirement could remain in tact. The first
sub-fragment, the 'start condition' for the interval, when (diff(r(i),y(i)) > E) was extracted
into TRACKING_PILOT_COMMANDS_START ; and the second sub-fragment, the 'stop condition' for

the interval, until (diff(r(i),y(i)) < e) was extracted into

TRACKING_PILOT_COMMANDS_STOP . Each of these was then substituted into the relevant location
in the child requirements R1 remains the same and R1.1 becomes:

R1.1 = when TRACKING_PILOT_COMMANDS_START if (SENSOR_FAULTS & (pilotInput =>

setThrust = V2) & (observedThrust = V1)) Controller shall until

TRACKING_PILOT_COMMANDS_STOP satisfy CONTROL_OBECTIVES & (observedThrust = V2)

Step 3: Apply Pull Up Requirement
After the refactoring in Step 2, we were left with a discontinuity between child and parent
requirements. The tracking pilot commands start and stop conditions had been extracted to two
requirements, but the parent requirement was left with the abstract trackingPilotCommands .

For example compare R1 = if (SENSOR_FAULTS & (trackingPilotCommands)) Controller

shall satisfy CONTROL_OBECTIVES with R1.1 in the previous step. This is similar to [code smell]
from [Refactoring, Fowler 1999].

To deal with the smell, we apply the Pull Up Requirement refactoring, which is based on the Pull
Up Method refactoring in [Refactoring, Fowler 1999]. This is effectively the Move Activity from
[Ramos et al. 2007] but here we are explicitly moving the requirement up, from the child
requirements to their parent.

We pull the calls to the two tracking pilot commands fragments, and their positioning, up into the
parent requirement. For example, R1 becomes:

R1 = when TRACKING_PILOT_COMMANDS_START if SENSOR_FAULTS Controller shall until

TRACKING_PILOT_COMMANDS_STOP satisfy (CONTROL_OBECTIVES)

Step 4: Remove Redundant Requirements
Now that we've extracted the repeated fragments into separate requirements, and pulled up a
common requirement, we're left with a lot of identical child requirements, so we can simplify by
removing them. For example requirements R1.1, R1.2, and R1.3 all read: when

TRACKING_PILOT_COMMANDS_START if (SENSOR_FAULTS & (pilotInput => setThrust = V2) &

(observedThrust = V1)) Controller shall until TRACKING_PILOTC_COMMANDS_STOP

satisfy CONTROL_OBJECTIVES & (observedThrust = V2) showing that we only need one child

requirement to implement the detail of requirement R1.

Limitations
This seems to make it much more difficult to export to CoCoSim, because there is no way of
telling FRET that you've referenced another requirement. Is this related to parent id?

af://n388
https://doi.org/10.5753/sbqs.2007.15573
af://n393
af://n395

	FRET Requirements Refactoring
	Requirements: EngineController
	Starting File: MF-FRET-EngineControllerv1.0.json

	Step 1: Fragments of FRET
	Step 2: Apply Extract Requirement
	Sensor Faults
	Control Objectives
	Tracking Pilot Commands
	Step 3: Apply Pull Up Requirement
	Step 4: Remove Redundant Requirements
	Limitations

