
Modelling SCJ Level 2 in Circus

Modelling Safety-Critical Java Level 2 in Circus

Matthew Luckcuck

University of York

3rd June 2014



Modelling SCJ Level 2 in Circus

Outline

Outline

Introduction

Safety-Critical Java Level 2
Circus
Context of Work
Modelling Challenges

Developing the Model

Summary and Further Work



Modelling SCJ Level 2 in Circus

Introduction

Aims

Produce a model of the SCJ Level 2 paradigm

Devise a formal translation strategy to convert SCJ Level 2
programs to this model



Modelling SCJ Level 2 in Circus

SCJ Level 2

SCJ Level 2 Features

Concurrent Missions with concurrent Managed Schedulables

Level 1 Managed Schedulables: PeriodicEventHandler,
AperiodicEventHandler, OneShotEventHandler

Level 2 Managed Schedulables: ManagedThread,
MissionSequencer

Access to Object.wait and Object.notify



Modelling SCJ Level 2 in Circus

SCJ Level 2

Mission Sequencers as Schedulables

Mission Sequencers may be nested inside Missions

Nested Mission Sequencers allow multiple Missions to be
active. . .

One active Mission per Mission Sequencer
Managed Schedulable Objects from any running Mission may
preempt, based on their priorities
No assumption of Schedulable Objects from a particular
mission having priority



Modelling SCJ Level 2 in Circus

SCJ Level 2

Safelet

Mission

Top-Level Mission Sequencer

Nested Mission Sequencer

Nested Mission

Managed Thread Event Handler

Nested Managed Thread Nested Event Handler

Figure 1: Possible Structure of a Level 2 Program



Modelling SCJ Level 2 in Circus

SCJ Level 2

Spacecraft Example

Three modes: Launch, Cruise, Land

Each has its own specific Schedulable Objects

There are also Schedulable Objects which run throughout all
the modes. . .

Monitoring the craft’s environment
Handling the craft’s controls



Modelling SCJ Level 2 in Circus

SCJ Level 2

Figure 2: Object Diagram of the Spacecraft example application



Modelling SCJ Level 2 in Circus

Circus Family

Circus Language

Combination of Z and CSP
Captures both State and Behaviour

Organised around Processes

Similar to Java classes
State component (Z) to hold variables
Actions (free combination of Z and CSP) to perform
behaviours
Main action to specify the overall behaviour of the process
Communication through CSP channels

channel −→ A
channel .parameter −→ A



Modelling SCJ Level 2 in Circus

Circus Family

Circus Variants

Our model also uses features from other members of the Circus
family

OhCircus. . .

Classes based on Java classes
Inheritance
Used to model simple data objects in the Application Model

Circus Time

Notion of (relative) time
wait t
channel@ time −→ A



Modelling SCJ Level 2 in Circus

Circus Family

However. . .

Model checker for Circus still in development

Leads to converting Circus specifications into Z and CSP. . .
using ProB to check the Z
using FDR to check the CSP

Causes obvious overheads

Why Use Circus?

Previous work using Circus and Java/SCJ. . .

Existing model of SCJ Level 1

Refinement-based development



Modelling SCJ Level 2 in Circus

Context of Work

SCJ Library

A anchor O anchor E anchor S anchor

P model

Application Model

Framework Model

Library Model

SCJ Program

SCJ JVM/API

Translation

Semantics

Data refinement Execution Architecture

(Missions & Handlers)

Verification

Executes

Abstract Specification SCJ Program ModelSCJ Program DesignClasses + Objects

Circus Time Circus Time + OhCircus Circus Time + OhCircus SCJCircus

Detailed Design

Circus Time + OhCircus

Refinement Laws

Diagrams 
DSLs

Provided by the software engineer

SCJ-compliant JDK library



Modelling SCJ Level 2 in Circus

Context of Work

Top-Down

Target for refinement-based development of SCJ programs

Refinement from abstract to concrete specifications. . .

Concrete specifications that capture the SCJ paradigm

Correctness by construction

Bottom-Up

Allows translation from SCJ code to model

Catches certain program errors. . .

Deadlock
Divergence
Some exceptions

Will not catch memory errors



Modelling SCJ Level 2 in Circus

Modelling Challenges

SCJ Challenges

Changing or untested language specification

Complexity of the unique features of Level 2

No complete Level 2 implementation. . .

Use RTSJ to simulate SCJ structure
‘Flatten’ programs with nested missions to test them using a
Level 1 implementation

Circus Challenges

Model checker still in development so convert to CSP. . .

Feature set does not match that of Circus
Modelling state becomes complicated

Large state process to model variables
Allows remote access to a process’ state



Modelling SCJ Level 2 in Circus

Developing the Model

Approach

Based on current Level 1 model

Separate model of SCJ into. . .

Framework, which captures the infrastructure classes
Application, which captures application-specific code using. . .

Circus processes
OhCircus classes

Translation strategy to capture the application-specific
information and output the Application model

Tool to automate this translation



Modelling SCJ Level 2 in Circus

Developing the Model

Figure 3: High-Level Framework and Application Models



Modelling SCJ Level 2 in Circus

Developing the Model

Coverage

Model ignores. . .

Priorities
Resources (E.g. Memory)

Model Captures. . .

Behaviour and State of Objects
Limited treatment of some Exceptions

Exceptions . . .
Causes Chaos in the specification

Built-in process that diverges

Memory Exceptions not covered



Modelling SCJ Level 2 in Circus

Developing the Model

Object model

Each object is modelled by up to four components. . .
Object: concerns derived from Object

If the class is used as a lock

Thread: identifies the thread of control

If the class has a controlling thread

Framework: concerns of the SCJ class being extended
Application: program-specific information

Composed to form one process

Parametrised with an ID

If a class has two instances, each has its own model



Modelling SCJ Level 2 in Circus

Developing the Model

Figure 4: Potential components of an Object’s Model



Modelling SCJ Level 2 in Circus

Developing the Model

Communication

Free communication across each model and between
Framework and Application models

Components communicate with components that are. . .
Of a different type

Querying concrete information
E.g. Mission Sequencer Framework communicating with the
Mission Sequencer Application to get the next mission

Of the same type

Objects communicating with other Objects
E.g. Mission Sequencer Framework calling the Mission
Framework’s Initialize action



Modelling SCJ Level 2 in Circus

Developing the Model

Figure 5: Framework Processes structure



Modelling SCJ Level 2 in Circus

Developing the Model

Model

Framework model in Figure 5 remains the same for each
program

Application model is similar but is generated afresh for each
program

Translation strategy only needs to extract application-specific
information from the program



Modelling SCJ Level 2 in Circus

Summary and Further Work

Summary

Model SCJ Level 2 paradigm as Framework and Application
combination

Model of SCJ Level 2 contributes to . . .

Top-down development as a refinement target
Bottom-up development as verification tool

Further Work

Devise Application model

Translation strategy to convert application code to
Application model

Tool to automate translation



Modelling SCJ Level 2 in Circus

Thank you for listening.
Any Questions?


