
Safety-Critical Java Level 2 Programs: Application, Modelling, and Verification

Safety-Critical Java Level 2 Programs:
Application, Modelling, and Verification

Matt Luckcuck

Supervisors:
Ana Cavalcanti and Andy Wellings

4th of August 2016

1 / 40

Safety-Critical Java Level 2 Programs: Application, Modelling, and Verification

Outline

Outline

Java in Safety-Critical Systems

Safety-Critical Java

Safety-Critical Java Level 2
Thesis Statement

Safety-Critical Java Level 2 Utility

Modelling Approach

Circus Intro
Model
Translation

Verification

Summary and Future Work

2 / 40

Safety-Critical Java Level 2 Programs: Application, Modelling, and Verification

Java in Safety-Critical Systems

Java

Java not traditionally associated with safety-critical programs

More abstraction, less control. . .

Garbage collection
Poor scheduling control

“The intrinsic safety of the standard language is
irrelevant, it is how safe the use of the language can
be made that matters” – Hatton Safer C (1995)

3 / 40

Safety-Critical Java Level 2 Programs: Application, Modelling, and Verification

Java in Safety-Critical Systems

Java

Interesting for safety-critical systems:

Strong typing
Precise definition
Widely understood
Language features e.g. exception handling

Long standing effort to improve Java. . .

Java Community Process’s Java Specification Requests
(JSR)

4 / 40

Safety-Critical Java Level 2 Programs: Application, Modelling, and Verification

Java in Safety-Critical Systems

Real-Time Specification for Java (RTSJ)

Java Community Process: JSR 1

RTSJ addresses some of the Java’s problems. . .

Region-based memory
Control memory usage
Better scheduling control

Complex for safety-critical programs

5 / 40

Safety-Critical Java Level 2 Programs: Application, Modelling, and Verification

Safety-Critical Java

SCJ Overview

International effort lead by The Open Group

Java Community Process: JSR 302

Builds on RTSJ

Aimed at applications that must be certified

Embeds a new, simpler programming paradigm

∼ 112 pages of language specification. . .

∼ 36 classes and interfaces
Does not cover verification

6 / 40

Safety-Critical Java Level 2 Programs: Application, Modelling, and Verification

Safety-Critical Java

SCJ Overview

Requires a real-time virtual machine

Real-time abstractions from the RTSJ

Restricted hierarchical programming structure

Region-based hierarchical memory

Fixed priority scheduler with Priority Ceiling Emulation

7 / 40

Safety-Critical Java Level 2 Programs: Application, Modelling, and Verification

Safety-Critical Java

Tools

SCJ has specific tools for. . .

Memory Safety
Worst-Case Memory Consumption
Worst-Case Execution Time
Schedulability
Program Verification

8 / 40

Safety-Critical Java Level 2 Programs: Application, Modelling, and Verification

Safety-Critical Java

Compliance Levels

Level 0:

Single processor
Cyclic executive

Level 1:

Introduce concurrency
More release patterns

Level 2:

Highly concurrent
Multi-processor
Complicated release patterns
Suspension

9 / 40

Safety-Critical Java Level 2 Programs: Application, Modelling, and Verification

Safety-Critical Java

SCJ API

Safelet: controls the program and starts the Mission
Sequencer

MissionSequencer: instantiates and starts a sequence of
Missions

Mission: controls a set of tasks, represented by subclasses of
Managed Schedulable

ManagedSchedulable: super-type of all four tasks:

PeriodicEventHandler

AperiodicEventHandler

OneShotEventHandler

ManagedThread

10 / 40

Safety-Critical Java Level 2 Programs: Application, Modelling, and Verification

Safety-Critical Java

Start

Terminate

Mission
Execution

Mission
Initialization

Select
Mission

No

Yes

No

Yes

 Sequence
 Ended?

Mission
Cleanup

 Continue
Sequence?

Mission Phases

1. Initialize: creates and registers schedulables

2. Execute: simultaneously activate mission’s schedulables

3. Cleanup: reset data structures

11 / 40

Safety-Critical Java Level 2 Programs: Application, Modelling, and Verification

SCJ Level 2

SCJ Level 2 Features

Access to suspension features

Access to all Managed Schedulables. . .

Uniquely: ManagedThread and MissionSequencer

Schedulable Mission Sequencers allow multiple Missions to be
active. . .

One active Mission per Mission Sequencer
Schedulables from any active Mission may preempt,
based on their priorities
No assumption of schedulable from a particular mission
having priority

12 / 40

Safety-Critical Java Level 2 Programs: Application, Modelling, and Verification

Thesis Statement

The paradigm embedded in Safety-Critical Java (SCJ)
Level 2 provides features that have useful applications
that Levels 0 and 1 are not capable of programming.
Further, the Level 2 paradigm can be formally modelled
using a language that captures state and behaviour, to
show that neither the SCJ infrastructure nor a valid SCJ
program present undesirable program states such as
deadlock, divergence, or nondeterminism.

13 / 40

Safety-Critical Java Level 2 Programs: Application, Modelling, and Verification

Safety-Critical Java Level 2 Utility

Overview

When to use Level 2 was not obvious:

Level 0: Cyclic-Executive and Periodic Tasks
Levels 1 and 2: Concurrency and Fixed-Priority
Scheduling

Managed Threads provide a new release pattern. . .

But what are Managed Threads Useful for?

What are the other unique features useful for?

14 / 40

Safety-Critical Java Level 2 Programs: Application, Modelling, and Verification

Safety-Critical Java Level 2 Utility

Schedulable Mission Sequencers

Complex Program Architectures:

Multiple-Mode Applications. . .

Allows application to change behaviour to suit context

Independently-Developed Subsystems. . .

Composes programs of subsystems

Better encapsulation and more control than Level 1

Managed Threads and Suspension

Producer-Consumer Systems

Extend SCJ features:

E.g extended release patterns

Level 1 cannot be capture any of these features
15 / 40

Safety-Critical Java Level 2 Programs: Application, Modelling, and Verification

Safety-Critical Java Level 2 Utility

Level 2 Problems. . .

Investigation also uncovered some Level 2 problems

Proposed solutions to these

Model used to propose simpler termination protocol

Accepted into the specification

Termination in Level 2. . .

16 / 40

Safety-Critical Java Level 2 Programs: Application, Modelling, and Verification

Safety-Critical Java Level 2 Utility

Termination in Level 2

According to the language specification, during Mission
termination the infrastructure will. . .

‘. . . wait for all the Managed Schedulable Objects
associated with this Mission to terminate’

If a schedulable is blocked at this point, it will never terminate

Language specification now contains specific guidance for
termination in Level 2:

Manually interrupt potentially blocked threads, using the
signalTermination() method (called on each
schedulable during termination)
Does not automatically solve the problem, but provides a
uniform way of handling custom termination behaviour

17 / 40

Safety-Critical Java Level 2 Programs: Application, Modelling, and Verification

Modelling Approach

This work. . .

Models the SCJ Level 2 paradigm using Circus

Agnostic of Java

Limited treatment of some Exceptions

First formal semantics of SCJ Level 2

Builds on a model of SCJ Level 11. . .

Level 2 features
API changes

Model ignores. . .

Scheduling
Resources (E.g. Memory)

1Zeyda et al. Circus Models for Safety-Critical Java Programs. Computer
Journal 2014

18 / 40

Safety-Critical Java Level 2 Programs: Application, Modelling, and Verification

Model Benefits

Top-Down

Target for refinement-based development of SCJ programs2

Refinement from abstract to concrete specifications. . .

Concrete specifications that capture the SCJ paradigm

Correctness by construction

Bottom-Up

Translation from SCJ code to model

Catches certain program errors. . .

Deadlock
Divergence
Exceptions

2Cavalcanti, Sampaio, and Woodcock. A Refinement Strategy for Circus.
Formal Aspects of Computing. Nov 2003

19 / 40

Safety-Critical Java Level 2 Programs: Application, Modelling, and Verification

Modelling Approach

Circus Language

Combination of Z and CSP

Captures both State and Behaviour

Organised around Processes

State component (Z) to hold variables
Actions (Z and CSP) to perform behaviours
Main action specifies overall behaviour

Communication through CSP channels

20 / 40

Safety-Critical Java Level 2 Programs: Application, Modelling, and Verification

Circus Family

Circus Variants

Our model also uses features from other members of the Circus
family

OhCircus. . .

Classes based on Java classes
Inheritance
Used to model simple data objects

Circus Time

Notion of (relative) time
Used for delays and deadlines

21 / 40

Safety-Critical Java Level 2 Programs: Application, Modelling, and Verification

Modelling Approach

ResultsSCJ
Framework

SCJ
Application

Circus
Program

SCJ API

SCJ Program

CSP
Program

FDR

22 / 40

Safety-Critical Java Level 2 Programs: Application, Modelling, and Verification

Modelling Approach

SafeletFW

To
pL
ev
el

M
is
si
on
Se
qu
en
ce
rF
W

MissionFW

SchedulableMissionSequencerFW

ManagedThreadFW

AperiodicEventHandlerFW

start_toplevel_sequencer

PeriodicEventHandlerFW

OneShotEventHandlerFW

start_mission

done_mission

requestTermination

initializeRet

signalTerminationCall

signalTerminationRet

start_mission
done_mission

signalTerminationCall
signalTerminationRet

cleanupSchedulableCall
cleanupSchedulableRet

signalTerminationCall
signalTerminationRet

cleanupSchedulableCall

cleanupSchedulableRet

signalTerminationCall
signalTerminationRet

cleanupSchedulableCall
cleanupSchedulableRet

done_toplevel_sequencer

...

...

...

...

...

initializeCall

23 / 40

Safety-Critical Java Level 2 Programs: Application, Modelling, and Verification

Modelling Approach

Framework:

Generic

API classes
MissionFW

MyMission

MyMissionApp

initialize

cleanup

initialize

cleanup

initialize()
cleanup()

Application:

Specific

Program
behaviour

24 / 40

Safety-Critical Java Level 2 Programs: Application, Modelling, and Verification

Modelling Extras

Exceptions

Modelled by an event followed by Chaos

Built-in process that diverges

Only for paradigm misuse by an application

API Coverage:

Thread interrupt
Incorrect method parameter
Suspension without a lock
Locking an object with a lower priority
Registering schedulable twice

25 / 40

Safety-Critical Java Level 2 Programs: Application, Modelling, and Verification

Modelling Extras

Synchronisation and Suspension

Extra processes in the Framework model capture the
synchronisation and suspension behaviour

Separate because this behaviour is not needed for all objects

Inheritance

The Method Call Binder process interfaces between the
processes in the Application model

It binds the events representing method calls to the location
of the method

Handles inherited methods and simplifies translation

26 / 40

Safety-Critical Java Level 2 Programs: Application, Modelling, and Verification

Translation

Overview

Informal translation strategy

Captures SCJ programs
Validation of model

Formalisation of core elements in Z

TightRope automatic generation of models from code

Occurs in Three Phases:

Analyse
Build
Generate

27 / 40

Safety-Critical Java Level 2 Programs: Application, Modelling, and Verification

Analyse

Analyse

Identifies all the components of the program

Records things like variable types

TightRope compiles the program to generate ASTs

No annotations needed, unlike Level 1 tool

28 / 40

Safety-Critical Java Level 2 Programs: Application, Modelling, and Verification

Build

Build

Build an environment for each class by extracting details from
the program and translating them to Circus

Safelet Environment. . .

Name
initialize()

getSequencer()

(Application-Specific) Fields and Methods

29 / 40

Safety-Critical Java Level 2 Programs: Application, Modelling, and Verification

Generate

Generate

Generates the output files using the environments

Each component has a template that its application models
conform to

We drop the information from the environments into the gaps
in the template

TightRope uses the FreeMarker template engine to automate
this

30 / 40

Safety-Critical Java Level 2 Programs: Application, Modelling, and Verification

Program Analysis

Overview

We want to be able to use this model to verify programs. . .

But there is no model checker for Circus

So, we use industry-proven CSP model checker FDR3. . .

But, this requires another translation.

Why Use Circus?

Useful integration of state and behaviour

31 / 40

Safety-Critical Java Level 2 Programs: Application, Modelling, and Verification

Program Analysis

Circus to CSPm

CSPm is the machine-readable version of CSP, used by FDR

Informal translation from Circus to CSPm

State in Circus processes becomes state process in CSPm

Most behaviour in Circus translates straight into CSPm

However, treatment of state in initial translations produced
intractable models. . .

32 / 40

Safety-Critical Java Level 2 Programs: Application, Modelling, and Verification

Program Analysis

33 / 40

Safety-Critical Java Level 2 Programs: Application, Modelling, and Verification

Program Analysis

34 / 40

Safety-Critical Java Level 2 Programs: Application, Modelling, and Verification

Program Analysis

Circus to CSPm

Improved the CSPm model with the help of Tom
Gibson-Robinson (FDR3 maintainer) at Oxford University

Animation and Model Checking in FDR3

Animate the Framework to compare to SCJ API and running
programs

Model Check the program specifications to ensure deadlock-
and divergence-freedom

We can also construct custom checks: exceptions,
particular program behaviours, etc

Model validity

35 / 40

Safety-Critical Java Level 2 Programs: Application, Modelling, and Verification

Evaluation

Model

Close correspondence with the SCJ API

Builds on the Level 1 model. . .

Level 1 model has been validated against the API

Our modelling effort simplified SCJ’s termination protocol. . .

Adopted in v0.96

36 / 40

Safety-Critical Java Level 2 Programs: Application, Modelling, and Verification

Evaluation

Translation

Informal translation strategy, which provides semantics to our
model

10 hand-translated examples covering different release
patterns, synchronisation, and schedulable mission sequencers

TightRope, produces models from code:

Producers–Consumers 6 classes ∼1.2 seconds
Aircraft 25 classes ∼2.3 seconds

. . . Some expression rewriting required

Core elements of translation formalised in Z

Further work on both of these is engineering

37 / 40

Safety-Critical Java Level 2 Programs: Application, Modelling, and Verification

Evaluation

Program Analysis

Informal translation to CSP, for FDR3

Circus is close to CSP
Scope for automation

Recent tool that automates Circus to CSPm translation3

But, this may have similar problems with scope, when
tested on models with larger state

3Beg and Butterfield. Development of a Prototype Translator from Circus
to CSPM. ICOSST 2015

38 / 40

Safety-Critical Java Level 2 Programs: Application, Modelling, and Verification

Summary and Further Work

Contributions

1. First examination of the utility of the features of SCJ Level 2,

2. First formal model of the SCJ Level 2 API, and

3. A strategy to translate SCJ Level 2 programs into our model.

Future Work

Fully formalise translation strategy

Reduce restrictions on TightRope input

Automate Circus to CSPm translation

39 / 40

Safety-Critical Java Level 2 Programs: Application, Modelling, and Verification

SCJ Level 2 Utility . . .

Luckcuck, Wellings, and Cavalcanti. ‘Safety-Critical
Java: Level 2 in Practice’. Concurrency and Computation:
Practice and Experience, [Accepted].

Wellings, Luckcuck, and Cavalcanti. ‘Safety-Critical Java
Level 2: Motivations, Example Applications, and Issues’.
JTRES 2013

Thank you for listening

Model. . .

Luckcuck. ‘A Formal Model for the SCJ Level 2 Paradigm’.
Doctoral Symposium of Formal Methods 2015

Luckcuck, Cavalcanti, and Wellings. ‘A Formal Model of the
Safety-Critical Java Level 2 Paradigm’. iFM 2016

40 / 40

