

Robotics and Integrated Formal Methods: Necessity meets Opportunity

Marie Farrell, Matt Luckcuck, and Michael Fisher

Department of Computer Science, University of Liverpool, UK

26th of September 2018

Matt Luckcuck

Robotics and iFM

Multi-dimensional:

Embedded System

- Embedded System
- Cyber-Physical System

- Embedded System
- Cyber-Physical System
- Real-Time System

- Embedded System
- Cyber-Physical System
- Real-Time System
- Hybrid System

- Embedded System
- Cyber-Physical System
- Real-Time System
- Hybrid System
- Adaptive System

- Embedded System
- Cyber-Physical System
- Real-Time System
- Hybrid System
- Adaptive System
- Autonomous System

Integrated Formal Methods (iFM)

- Integrating multiple formal methods
 - Loose: cooperating formalisms
 - Tight: single formalism
- Integration of formal and non-formal methods
 - e.g. Graphical notation

Necessity meets Opportunity

Necessity meets Opportunity

- Based on our previous survey work...
 - Available: https://arxiv.org/abs/1807.00048
- Robotics:
 - Present particular challenges
 - Require integration of diverse formal methods
- Formal Methods Benefits:
 - Real-World catalyst for integration research

Next...

- Highlight four robotics challenges
 - Environment
 - Certification
 - Multi-Robot Systems
 - Reconfiguration
- Discuss integrated formal approaches
 - Current
 - Direction

Challenge One: Modelling the Physical Environment

Challenge:

How to specify and verify the behaviour of the robot working in a dynamic and often unknown environment

Current Approaches:

- Ignore the environment!^a
- Assume that the environment it is static and known, prior to deployment^b
- Use predicates representing sensor data to abstract away from the environment^c

 ^aSavas Konur, Clare Dixon, and Michael Fisher. "Analysing Robot Swarm Behaviour via Probabilistic Model Checking". In: *Robotics and Autonomous Systems* 60.2 (2012), pp. 199–213.
^bSalar Moarref and Hadas Kress-Gazit. "Decentralized control of robotic swarms from high-level temporal

logic specifications". In: Int. Symp. Multi-Robot Multi-Agent Syst. IEEE, 2017.

^cMichael Fisher, Louise A Dennis, and Matt Webster. "Verifying Autonomous Systems". In: *Commun. ACM* 56.9 (2013), pp. 84–93.

Modelling the Physical Environment

Formal Methods must bridge the *reality gap*:

- Model the environment using
 - e.g. Probabilistic Temporal Logic (PTL)^a
- Monitor the environment
 - e.g. Timed Automata^b

^aM. Webster et al. "Toward Reliable Autonomous Robotic Assistants Through Formal Verification: A Case Study". In: *IEEE Transactions on Human-Machine Systems* 46.2 (2016), pp. 186–196.

^bAdina Aniculaesei et al. "Towards the Verification of Safety-critical Autonomous Systems in Dynamic Environments". In: *Electron. Proc. Theor. Comput. Sci.* 232 (2016), pp. 79–90.

Challenge Two: Trust and Certification Evidence

Trust and Certification Evidence

Operating Context

1. Saftey-Critical e.g. nuclear/aerospace

2. Require public trust

Challenges:

- Formal verification must provide appropriate evidence for
 - Public Trust
 - Regulator Certification
- Which formal methods are suitable?
 - What evidence is needed?
 - What type of robotic system?

Trust and Certification Evidence

Current Approaches:

- Automatic generation of safety case
 - e.g. AUTOCERT for a pilotless aircraft^a
- Formalising and verifying domain specific rules
 - e.g. Isabelle/HOL to formalise rules for vehicle overtaking^b

Robotics and iFM

^{*a*}Ewen Denney and Ganesh Pai. "Automating the assembly of aviation safety cases". In: *IEEE Transactions on Reliability* 63.4 (2014), pp. 830–849.

^bAlbert Rizaldi et al. "Formalising and monitoring traffic rules for autonomous vehicles in Isabelle/HOL". In: Integr. Form. Methods. Vol. 10510. LNCS. 2017, pp. 50–66.

Challenge Three: Multi-Robot Systems

Types of Multi-Robot Systems

► Homogeneous robots: Swarms

Heterogeneous robots: Teams

Multi-Robot Systems

Types of Multi-Robot Systems

- ► Homogeneous robots: Swarms
- ▶ Heterogeneous robots: *Teams*

Multi-Robot Systems

Types of Multi-Robot Systems

- ► Homogeneous robots: Swarms
- ▶ Heterogeneous robots: *Teams*

Challenges:

- Linking formal specifications
 - macroscopic (whole swarm) level
 - microscopic (individual robots) level
- State explosion when model-checking large swarms.

Multi-Robot Systems: Swarms

Current Approaches:

- Temporal logics
 - Specify and verify swarms at different levels of abstraction^a
- Abstractions the mitigate state explosion^b
 - Symmetry reduction
 - Counting abstraction

^aAlan FT. Winfield et al. "On formal specification of emergent behaviours in swarm robotic systems". In: *Int. J. Adv. Robot. Syst.* 2.4 (2005), pp. 363–370.

^bSavas Konur, Clare Dixon, and Michael Fisher. "Analysing Robot Swarm Behaviour via Probabilistic Model Checking". In: *Robotics and Autonomous Systems* 60.2 (2012), pp. 199–213.

Multi-Robot Systems: Teams

Challenge:

- Linking specification
 - macroscopic (whole team) level
 - microscopic (individual robots) level
- Heterogeneity...

Challenge Four: Adaptation, Reconfigurability, and Autonomy

Challenge

- Specifying self-adaptive systems
 - Respond to changes in the environment
- Specifying reconfigurable systems
 - Decide on how best to reconfigure themselves
- Specifying reconfigurability
 - Autonomous decision-making

Current Approaches:

- Model-checking at runtime for self-adaptive systems^a
- Agent-based systems to model autonomy
 - Verified using temporal logics and model-checkers
 - e.g. probabilistic model-checking of autonomous mine detector robot^b

^aBetty H.C. Cheng et al. "Using models at runtime to address assurance for self-adaptive systems". In: Models@run.time. Vol. 8378. LNCS. 2014, pp. 101–136.

^bPaolo Izzo, Hongyang Qu, and Sandor M. Veres. "A stochastically verifiable autonomous control architecture with reasoning". In: *Conf. Decis. Control* (2016), pp. 4985–4991.

Integrated Formal Approaches to Robotic Challenges

1 Environment

1 Environment

iFM Can...

1 Combine static and dynamic models

- 1 Environment
- 2 Certification Evidence

iFM Can...

1 Combine static and dynamic models

- 1 Environment
- 2 Certification Evidence

- **1** Combine static and dynamic models
- 2 Provide robust evidence

- 1 Environment
- 2 Certification Evidence
- 3 Multi-Robot Systems

- **1** Combine static and dynamic models
- 2 Provide robust evidence

- 1 Environment
- 2 Certification Evidence
- 3 Multi-Robot Systems

- **1** Combine static and dynamic models
- 2 Provide robust evidence
- 3 Link macro- and micro- behaviour

Robotic Challenges...

- 1 Environment
- 2 Certification Evidence
- 3 Multi-Robot Systems
- 4 Reconfigurable/Autonomous Systems

iFM Can...

- **1** Combine static and dynamic models
- 2 Provide robust evidence
- 3 Link macro- and micro- behaviour

Robotic Challenges...

- Environment
- 2 Certification Evidence
- 3 Multi-Robot Systems
- 4 Reconfigurable/Autonomous Systems

iFM Can...

- 1 Combine static and dynamic models
- 2 Provide robust evidence
- 3 Link macro- and micro- behaviour
- Describe complex configuration and autonomy

Adoption

- Event-B and PRISM
 - Reconfigurable architecture for an on-board satellite system
- CSP || B
 - Vehicle platooning
- ▶ AJPF, UPPAAL, and Spatial Calculus
 - Platoon joining and leaving procedures for a driverless car
- **FSP** and π ADL for safety
 - Multi-agent systems
- RoboChart
 - State Charts with CSP underneath

Complementary methods

- Benefits of two formal methods
 - e.g. model-checking and proof-based methods
- Benefits of formal method and existing non-formal method
 - Robust (auto-generated?) evidence for certification

- Aimed at ROS, Swarms, Teams, etc
- Link abstract specifications of nodes...
- ... with the specification of the node
- Convert between verification tools
- Challenges:

- Aimed at ROS, Swarms, Teams, etc
- Link abstract specifications of nodes...
- ... with the specification of the node (which may be heterogeneous)
- Convert between verification tools
- Challenges:
 - Different Levels of Abstraction

- Aimed at ROS, Swarms, Teams, etc
- Link abstract specifications of nodes...
- ... with the specification of the node
- Convert between verification tools
- Challenges:
 - Different Levels of Abstraction
 - Different formalisms?

- Aimed at ROS, Swarms, Teams, etc
- Link abstract specifications of nodes...
- ... with the specification of the node
- Convert between verification tools
- Challenges:
 - Different Levels of Abstraction
 - Different formalisms?
 - Different properties?

- Aimed at ROS, Swarms, Teams, etc
- Link abstract specifications of nodes...
- ... with the specification of the node
- Convert between verification tools
- Challenges:
 - Different Levels of Abstraction
 - Different formalisms?
 - Different properties?
 - Consistency of properties and information?

Necessity meets Opportunity

Who benefits?

Who benefits?

Robotics: integration of formal methods into the development process and potential solutions to the four challenges identified earlier.

Who benefits?

Robotics: integration of formal methods into the development process and potential solutions to the four challenges identified earlier.

iFM: a set of real-world targets that will help to advance the field in new and exciting directions.

Motivating Survey:

Luckcuck, M., Farrell, M., Dennis, L., Dixon, C., & Fisher, M. (2018). Formal Specification and Verification of Autonomous Robotic Systems: A Survey. arXiv preprint arXiv:1807.00048.

Robotics and Artificial Intelligence in Hazardous Environments:

- RAIN: https://rainhub.org.uk/
- ORCA: https://orcahub.org/
- FAIR-SPACE: https://www.fairspacehub.org/

Questions?