A Formal Model for the SCJ Level 2 Paradigm

Doctoral Symposium FM2015

Matthew Luckcuck

Supervisors:
Ana Cavalcanti and Andy Wellings

University of York

22nd June 2015
Outline

- Introduction
 - Problem
 - Circus
 - Safety-Critical Java Level 2
- Developing the Model
- Contributions
- Summary and Further Work
Introduction

Open Problem

- Safety-Critical Java (SCJ)...
 - Java profile
 - Interesting paradigm for high integrity programming
 - Three compliance levels: 0, 1, and 2
- SCJ does not directly address verification techniques
 - Existing results address verification for Levels 0 and 1
- SCJ Level 2 presents a bigger challenge
Introduction

Thesis Hypothesis

The paradigm embedded in SCJ Level 2 can be formally modelled using a language that captures state and behaviour, to show that neither the SCJ infrastructure nor a given SCJ program present undesirable program states such as deadlock, divergence, or nondeterminism.
Introduction

Aims

- Produce a model of the SCJ Level 2 paradigm in Circus
 - ✓
- Devise a formal translation strategy to convert SCJ Level 2 programs to this model
 - ...
- Show a model of a program can be used for proof of program properties
 - ...

Introduction

SCJ Level 2

- Little attention from academia or industry so far...
 - We examine the uses of Level 2’s features and example applications\(^a\)
 - Icelab HVM supports SCJ and provides an SDK
 - Now supports Level 2
- SCJ Standard does not cover verification...

\(^a\)Luckcuck, Wellings, and Cavalcanti, “Safety-Critical Java Level 2: Motivations, Example Applications and Issues”.
Introduction

SCJ Level 2

- Verification has been addressed...
 - SCJChecker\(^a\)
 - SafeJML\(^b\)
 - Refinement strategy using Circus\(^c\)

- ...but not specifically for Level 2

\(^a\)Tang, Plsek, and Vitek, “Static Checking of Safety Critical Java Annotations”.

\(^b\)Haddad, Hussain, and Leavens, “The Design of SafeJML, a Specification Language for SCJ with Support for WCET Specification”.

\(^c\)Cavalcanti et al., “Safety-Critical Java in Circus”.
Why Use *Circus*?

- Previous work on *Circus* with Java and SCJ...
 - Existing model of SCJ Level 1
- Refinement-based development
 - Refinement strategy...

Zeyda et al., “Circus Models for Safety-Critical Java Programs”.
Circus Family

Circus Language
- Combination of Z and CSP
 - Captures both State and Behaviour
- Contains a notion of refinement
- Organised around Processes...
 - State component (Z) to hold variables
 - Actions (Z and CSP) to perform behaviours

Circus Variants
- OhCircus...
 - Classes based on Java’s implementation of Object-Orientation
 - Inheritance
- Circus Time...
 - Notion of (relative) time
Circus Refinement Strategy

Abstract

Specification

SCJ Program

Model

Application Model

Framework Model

SCJ Program Translation

Semantics

Verification

Refinement Laws

Diagrams

DSLs

Figure 1: Circus Refinement Strategy
SCJ...

- Restriction of the Real-Time Specification for Java (RTSJ)
- Provides a Java-based language for systems that need to be certified...
 - Avionics: ED-12C/DO-178C at Level A
 - Failure would prevent continuous safe flight and landing
- Restricted programming and execution model

Centred Around Missions

- Activated in sequence by a Mission Sequencer
- Aim to perform a particular function
- Manage a set of real-time tasks...
 - Embodied in SCJ by Schedulable Objects
SCJ is organised into three compliance levels
Intends to ease certification efforts
Each level has a set of unique features plus those from the level(s) below it
Ascending complexity...
- Level 0: Cyclic Programs
- Level 1: Concurrent Tasks
- Level 2: Concurrent Missions
SCJ Compliance Levels

Compliance Level 2

- Least restricted compliance level
- Complex structures due to concurrent missions...
 - Tasks from any active mission may preempt
- May use all four SCJ execution patterns: periodic, aperiodic, run-once after a time offset, and run-to-completion.
- Access to Java suspension
 - wait() and notify()
A Formal Model for the SCJ Level 2 Paradigm

SCJ Level 2

Aircraft Example

- Three modes: Take Off, Cruise, Land
 - Each has its own specific Schedulable Objects
- There are also Schedulable Objects which run throughout all the modes...
 - Handling the controls
 - Monitoring the cabin pressure, fuel, etc.
- Adapted from an example in our paper
Figure 2: Simplified Object Diagram of the Aircraft example application
Developing the Model

Modelling Approach

- Captures SCJ program as...
 - **Framework**: API behaviour
 - **Application**: application-specific behaviour
- Translation strategy captures the application-specific information
 - Simplifies translation strategy
Developing the Model

Framework [AppSync] Application

Figure 3: High Level Model
A Formal Model for the SCJ Level 2 Paradigm

Figure 4: Solution Flow Chart
Developing the Model

Coverage

- Model Captures...
 - Behaviour and state of objects
 - Suspension
 - Limited treatment of some exceptions

- Exceptions only captured when they indicate a misuse of the SCJ paradigm...
 - Null parameter exceptions not covered, for example
 - Represented by Chaos in the specification

- Model abstracts away from...
 - Scheduling
 - Resources (E.g. Memory)
Contributions

Bottom-Up

The model and translation strategy . . .

1 Verification of SCJ programs
2 Verification of SCJ API
 • Modelled separately

Top-Down

The model in *Circus*. . .

3 Target for refinement-based development of SCJ Level 2 programs. . .
 • Refinement from abstract specifications. . .
 • . . . to concrete specifications that capture the SCJ paradigm
Modelling Challenges

SCJ Challenges
- Changing or untested language specification...
 - Though this has stabilised more recently
- Complexity of the unique features of Level 2
- Lack of wide experience of Level 2...
 - Only recently acquired a Level 2 implementation

Circus Challenges
- Model checker still in development so convert to CSP...
 - Different feature set to Circus
 - Modelling state becomes complicated
 - Large state process to model variables
 - Smart translations needed for efficient implementation in FDR
Summary and Further Work

Summary

- Provided the first examination of Level 2 features and described example applications
- Model SCJ Level 2 paradigm as Framework and Application combination
- Model of SCJ Level 2 contributes to...
 - Bottom-up development as verification tool
 - Top-down development as a refinement target

Further Work

- Devise translation strategy
 - Tool to automate translation
- Translate programs to validate model