
Efficient Model Checking

Efficient Model Checking for Circus Using FDR

26th May 2015

Efficient Model Checking

Introduction

Aims

Introduce Model Checking

Talk about efficient Model Checking for Circus. . .

Topics

1 Model Checking Overview

2 FDR Introduction

3 Circus Introduction

4 Model Checking Problems

Thanks

Alvaro Miyazawa

Tom Gibson-Robinson (Oxford)

Efficient Model Checking

Model Checking

What is Model Checking?

Technique for verifying concurrent systems

Determines if M is a model for a formula f

M is a transition system
f is a temporal logic specification

That is, M exhibits whatever property f captures

In traditional Model Checking, M and f are written in
different languages

Efficient Model Checking

Model Checking

Temporal Logic

In temporal logic a formula has dynamic truth

A formula can be true for some of a system’s states. . .
But false for others

Usually has operators to specify. . .

What happens next
What happens sometime in the future
Something that happens for all future states
And logic operators like negation, conjunction and disjunction

Efficient Model Checking

Model Checking

Transition Systems

Model a system using. . .

States (static structure)
Transitions (dynamic structure)

Finite transition systems can be expressed as directed graphs

s0

s1 s2

Efficient Model Checking

Model Checking

Advantages

No need to write proofs. . .

Although the model and the specification are needed

Automatic. . .

After the model and specification are written

Concurrency errors. . .

Difficult to reproduce with testing

Fast. . .

Compared to other rigorous methods, like proof checking

Counterexamples. . .

Invaluable for debugging

Efficient Model Checking

Model Checking

Disadvantages

Finite state. . .

Automation generally requires finite state systems

State Explosion. . .

Can be a big problem, most of the problems we address are
due to this

Efficient Model Checking

Failures-Divergences Refinement

FDR

Model Checking tool. . .

Although it’s really a refinement checker

Model and the specification are the same language. . .

CSPm, the machine-readable version of CSP

Performing a check. . .

Compile both CSP processes into Labelled Transition Systems
Check if one is a refinement of the other

Efficient Model Checking

Failures-Divergences Refinement

Refinement

Is a model an implementation of a specification?

P v Q if every behaviour of Q is also a behaviour of P

Q exhibits the property captured by P
Q implements P

Semantic Models

Traces refinement vT. . .

P vT Q if every trace of Q is a trace of P

Failures Refinement vF. . .

Failure: a trace leading to events that may be refused

Failures-Divergences Refinement vFD. . .

Divergence: a trace leading to undefined behaviour

Efficient Model Checking

Circus and CSPm Introduction

Circus

Combines. . .

CSP to capture Behaviour
Z to capture Data

Variants. . .

Object Orientation – OhCircus
Time – CircusTime

Model Checking in FDR. . .

Requires translation to CSPm

Different capabilities. . .

Efficient Model Checking

Circus and CSPm Introduction

CSPm

Events. . .

Model important points in the history of the system
May communicate parameters (c!x or c?x or simply c.x)
Parameters can be restricted to certain values (c?x:set)
Sequenced using prefix (c -> P)
May be guarded by a predicate ((guard)& c -> P)

Processes in. . .

External choice (P [] Q)
Interleaving (P ||| Q)
Parallel (P [|X|] Q)
Sequence (P ; Q)

Replication (e.g. ||| s : set @ P(s))

Efficient Model Checking

Model Checking Problems

Problem Classes

Data. . .
FDR struggles with. . .

Large data-types
Processes holding several unrelated parameters of large
data-types
Infinite types

Structure. . .
FDR struggles with. . .

Large numbers of states
Large orderings of processes from parallelisms

Efficient Model Checking

Model Checking Problems

Data Problems

Circus has variables but CSP does not. . .

To represent variables in CSP we use processes to control
variables
e.g. P(num) to control the variable num

FDR evaluates and compiles all possible combinations of
states

Strive to reduce the state space in the model. . .

Efficient Model Checking

Data Problems

Reducing State Space

Bound large types

For example {0..50}
Use direct function calls to pass large parameters, if
possible. . .

Uses the functional language elements of CSPm
e.g instead of accumulating the set with
P(set) = add?x -> P(union(set, x)). . .

Call P({1..100}) to directly pass the set

Refactor processes that control large state variables into many
smaller processes in interleaving. . .

Efficient Model Checking

Data Example One

Use Case

Model contains a set of data of type value

We can put values in and take values out

Attempting to put the same value in twice is not possible

Efficient Model Checking

Data Example One

Process Controlling a Set: Bad

P1(set) =

in?x:set -> P1(set)

[]

in?x:diff(value,set) -> P1(union(set, x))

[]

out?x:set -> P1(diff(set, x))

Efficient Model Checking

Data Example One

Process Controlling a Set: Good

P2 = ||| x : value @ NotMember(x)

NotMember(x) =

in.x -> Member(x)

Member(x) =

in.x -> Member(x)

[]

out.x -> NotMember(x)

Efficient Model Checking

Data Example One

Comparison

Since both processes can only add the same number to the set
once, they are equivalent. . .

P1 vT P2 and P2 vT P1

P1 vF P2 and P2 vF P1

P1 vFD P2 and P2 vFD P1

Efficient Model Checking

Data Example One

Deadlock Freedom Check

value=

{0..5} {0..10} {0..15} {0..20}

P1
Compiled 0.02s 0.69s 39.57s 7438.52s1

Checked 0.04 0.02s 0.12s 3.84s

P2
Compiled 0.01s 0.01s 0.01s 0.01s
Checked 0.06s 0.08s 0.23s 4.41s

∼ 2 hours

Efficient Model Checking

Data Example One

Explanation

P1 takes longer to compile than P2 but P2 takes longer to
check

There is a trade-off between the compilation time of a set and
the checking time of many interleaved actions

Checking phase can be more easily parallelised

Efficient Model Checking

Data Example Two

Use Case

Model contains a sequence representing a stack

We can push and pop a value, and check the top element

We cannot push more than a max number of values

We cannot pop a value or check the top value of an empty
stack

Efficient Model Checking

Data Example Two

Process Controlling a Sequence: Bad

Q1(sequence) =

(#sequence < maxStackId) &

push?x ->

Q1(<x>^sequence)

[]

(not null(sequence)) &

(

pop ->

Q1(tail(sequence))

[]

top!head(sequence) ->

Q1(sequence)

)

Efficient Model Checking

Data Example Two

Process Controlling a Sequence: Good

Q2 =

(|| i : value @ [AlphaFree(i)]

Free(i)

) \{| resume|}

Efficient Model Checking

Data Example Two

Process Controlling a Sequence: Good

Free(id) = push.id?v -> Full(id, v)

Full(id, v) =

pop.id-> (if id > minStackId then

resume.id-1 -> Free(id)

else

Free(id))

[]

(id < maxStackId) &

push.id+1? -> resume.id -> Full(id, v)

[]

top.id!v -> Full(id, v)

Efficient Model Checking

Data Example Two

Comparison

Since this is only a change of structure (once we apply
renaming to Q2) these processes are equivalent. . .

Q1 vT Q2 and Q2 vT Q1

Q1 vF Q2 and Q2 vF Q1

Q1 vFD Q2 and Q2 vFD Q1

Efficient Model Checking

Data Example Two

Deadlock Freedom check

value=

{0..5} {0..6} {0..7} {0..8}

Q1
Compiled 0.82s 13.92s 417.83s 21462.052

Checked 0.02s 0.07s 0.99s N/A3

Q2
Compiled 0.02s 0.02s 0.03s 0.03s
Checked 0.09s 0.14s 0.89s 18.57s

2∼ 5.9 hours
3FDR crashed. . .

Efficient Model Checking

Data Example Two

Explanation

Q1 compiles slower due to checking the length of the sequence

Q2 compiles faster because each process only controls one
variable

Trade-off in terms of checking. . .

Q1 controls a sequence, but is sequential
Q2’s sub-processes only control one variable each but being are
parallel

Efficient Model Checking

Process Structure Problems

Large Possible Orderings of Behaviour

FDR explores all the possible states

Before any hiding or parallel restrictions can occur

This can cause FDR to use a lot of memory

Efficient Model Checking

Structure Example One

Use Case

Waiting for many subordinate processes to signal readiness. . .

Which may happen in any order

Efficient Model Checking

Structure Example One

For a process. . .

R(x) = ready.x -> SKIP

Simple Replicated Interleave. . .

Interleave = ||| x : value @ R(x)

. . . Becomes Replicated Sequential Composition

Sequential = ; x : seq(value) @ R(x)

Efficient Model Checking

Structure Example One

Comparison

Interleave vT Sequential but not the other way around. . .

Because Interleave can perform ready.x events in any order,
whereas in Sequential the order is fixed

Refinement does not hold in any other semantic models

Sequential can be said to implement Interleave

Efficient Model Checking

Structure Example One

Deadlock Freedom check

value=

{0..15} {0..20} {0..25} {0..30}

Intr
Compiled 0.01s 0.01s 0.01s 0.01s
Checked 0.17s 1.99s 77.34s 3455.14s4

Seq
Compiled 0.00s 0.00s 0.01s 0.01s
Checked 0.05s 0.05s 0.04s 0.05s

4∼ 57.5 minutes

Efficient Model Checking

Structure Example One

Explanation

R(x) is a simple process so both versions are fast

Interleave is slower to check because the events may happen
in any order

Sequential is much quicker because FDR chooses an arbitrary
order for the events to happen in

However, these processes are not equivalent

Efficient Model Checking

Summary

Model Checking

Verification technique useful for concurrent systems

Usually automatic and quick

However, has some general limitations

State explosion being the most common

Efficient Model Checking

Summary

Efficient Model Checking in FDR

Problems can occur when using data or parallelism yield a
large number of state

Solutions. . .

Use the functional elements of CSPm
Refactor processes controlling variables
Possibly refactor interleavings

Mileage may vary. . .

