
A Formal Model of SCJ Level 2

A Formal Model of the
Safety-Critical Java Level 2 Paradigm

Matt Luckcuck Ana Cavalcanti Andy Wellings

University of York,
UK

iFM, June 2016

1 / 27



A Formal Model of SCJ Level 2

Outline

Outline

Java in Safety-Critical Systems

Safety-Critical Java

Safety-Critical Java Level 2

Circus

Modelling Approach

Summary and Next Steps

2 / 27



A Formal Model of SCJ Level 2

Java in Safety-Critical Systems

Java

Java not traditionally associated with safety-critical programs

More abstraction, less control. . .

Garbage collection
Poor scheduling control

“The intrinsic safety of the standard language is
irrelevant, it is how safe the use of the language can
be made that matters” – Hatton Safer C (1995)

3 / 27



A Formal Model of SCJ Level 2

Java in Safety-Critical Systems

Java

Interesting for safety-critical systems:

Strong typing
Precise definition
Widely understood
Language features e.g. exception handling

Long standing effort to improve Java. . .

Java Community Process’s Java Specification Requests
(JSR)

4 / 27



A Formal Model of SCJ Level 2

Java in Safety-Critical Systems

Real-Time Specification for Java (RTSJ)

Java Community Process: JSR 1

RTSJ addresses some of the Java’s problems. . .

Region-based memory
Control memory usage
Better scheduling control

Complex for safety-critical programs

5 / 27



A Formal Model of SCJ Level 2

Safety-Critical Java

SCJ Overview

International effort lead by The Open Group

Java Community Process: JSR 302

Builds on RTSJ

Aimed at applications that must be certified

Embeds a new, simpler programming paradigm

∼ 112 pages of language specification. . .

∼ 36 classes and interfaces
Does not cover verification

6 / 27



A Formal Model of SCJ Level 2

Safety-Critical Java

SCJ Overview

Requires a real-time virtual machine

Real-time abstractions from the RTSJ

Restricted hierarchical programming structure

Region-based hierarchical memory

Fixed priority scheduler with Priority Ceiling Emulation

7 / 27



A Formal Model of SCJ Level 2

Safety-Critical Java

Tools

SCJ has specific tools for. . .

Memory Safety
Memory Consumption
Execution Time
Schedulability
Program Verification

8 / 27



A Formal Model of SCJ Level 2

Safety-Critical Java

Compliance Levels

Level 0:

Single processor
Cyclic executive

Level 1:

Introduce concurrency
More release patterns

Level 2:

Highly concurrent
Multi-processor
Complicated release patterns
Suspension

9 / 27



A Formal Model of SCJ Level 2

Safety-Critical Java

SCJ API

Safelet: controls the program and starts the Mission
Sequencer

MissionSequencer: instantiates and starts a sequence of
Missions

Mission: controls a set of tasks, represented by subclasses of
Managed Schedulable

ManagedSchedulable: super-type of all four tasks:

PeriodicEventHandler

AperiodicEventHandler

OneShotEventHandler

ManagedThread

10 / 27



A Formal Model of SCJ Level 2

Safety-Critical Java

Mission Phases

1. Initialize: creates and registers schedulables

2. Execute: simultaneously activate mission’s schedulables

3. Cleanup: reset data structures

11 / 27



A Formal Model of SCJ Level 2

SCJ Level 2

SCJ Level 2 Features

Access to suspension features

Access to all Managed Schedulables. . .

Uniquely: ManagedThread and MissionSequencer

Schedulable Mission Sequencers allow multiple Missions to be
active. . .

One active Mission per Mission Sequencer
Schedulables from any running Mission may preempt,
based on their priorities
No assumption of schedulable from a particular mission
having priority

12 / 27



A Formal Model of SCJ Level 2

Modelling Approach

This work. . .

Models the Safety-Critical Java (SCJ) Level 2 paradigm using
Circus

Agnostic of Java

Limited treatment of some Exceptions

First formal semantics of SCJ Level 2

Builds on a model of SCJ Level 1. . .

Level 2 features
API changes

Model ignores. . .

Scheduling
Resources (E.g. Memory)

13 / 27



A Formal Model of SCJ Level 2

Model Benefits

Top-Down

Target for refinement-based development of SCJ programs

Refinement from abstract to concrete specifications. . .

Concrete specifications that capture the SCJ paradigm

Correctness by construction

Bottom-Up

Translation from SCJ code to model

Catches certain program errors. . .

Deadlock
Divergence
Exceptions

14 / 27



A Formal Model of SCJ Level 2

Modelling Approach

Circus Language

Combination of Z and CSP

Captures both State and Behaviour

Organised around Processes

State component (Z) to hold variables
Actions (Z and CSP) to perform behaviours
Main action specifies overall behaviour

Communication through CSP channels

15 / 27



A Formal Model of SCJ Level 2

Modelling Approach

ResultsSCJ 
Framework

SCJ
Application

Circus
Program

SCJ API

SCJ Program

CSP
Program

FDR

16 / 27



A Formal Model of SCJ Level 2

Modelling Approach

SafeletFW

To
pL
ev
el

M
is
si
on
Se
qu
en
ce
rF
W

MissionFW

SchedulableMissionSequencerFW

ManagedThreadFW

AperiodicEventHandlerFW

start_toplevel_sequencer

PeriodicEventHandlerFW

OneShotEventHandlerFW

start_mission

done_mission

requestTermination

initializeRet

signalTerminationCall

signalTerminationRet

start_mission
done_mission

signalTerminationCall
signalTerminationRet

cleanupSchedulableCall
cleanupSchedulableRet

signalTerminationCall
signalTerminationRet

cleanupSchedulableCall

cleanupSchedulableRet

signalTerminationCall
signalTerminationRet

cleanupSchedulableCall
cleanupSchedulableRet

done_toplevel_sequencer

...

...

...

...

...

initializeCall

17 / 27



A Formal Model of SCJ Level 2

Modelling Approach

Framework:

Generic

API classes
MissionFW

MyMission

MyMissionApp

initialize

cleanup

initialize

cleanup

initialize()
cleanup()

Application:

Specific

Program
behaviour

18 / 27



A Formal Model of SCJ Level 2

Modelling Approach

Exceptions

Modelled by an event followed by Chaos

Built-in process that diverges

Only for paradigm misuse

Coverage:

Thread interrupt
Incorrect method parameter
Suspension without a lock
Locking an object with a lower priority
Registering schedulable twice

19 / 27



A Formal Model of SCJ Level 2

Synchronisation and Suspension

Java Synchronisation and Suspension

SCJ restrictions:

Only synchronized methods
Threads queue in eligibility order
Most eligible waiting thread:

Highest priority thread. . .
That has been waiting for the longest time

Suspension is achieved with Object.wait() and
Object.notify(). . .

May only be called on this

20 / 27



A Formal Model of SCJ Level 2

Synchronisation and Suspension

Our Model

Extra processes to model synchronisation and suspension. . .

ObjectFW :

Object used as a lock
Stores threads waiting on this Object
Controls threads trying to lock this Object

ThreadFW :

Schedulable calling a synchronized method
Tracks priority and interrupted status

21 / 27



A Formal Model of SCJ Level 2

Synchronisation and Suspension

MissionFW

initialize

cleanup

ObjectFW

wait

notify

22 / 27



A Formal Model of SCJ Level 2

Evaluation

Confidence

Close correspondence with the SCJ API

Builds on the Level 1 model. . .

Level 1 model has been validated against the API

Our modelling effort simplified SCJ termination protocol. . .

Adopted in v0.96

23 / 27



A Formal Model of SCJ Level 2

Evaluation

Translation

Informal translation strategy, which provides semantics to our
model

10 hand-translated examples covering different release
patterns, synchronisation, and schedulable mission sequencers

Prototype tool, TightRope, to produce models from code:

Readers–Writers 6 classes ∼1.2 seconds
Aircraft 25 classes ∼2.3 seconds

24 / 27



A Formal Model of SCJ Level 2

Evaluation

Animation and Model Checking

Translated models CSPm to use FDR3. . .

Animate the Framework to compare to SCJ API and
running programs
Model Check the program specifications to ensure
deadlock- and divergence-freedom

25 / 27



A Formal Model of SCJ Level 2

Summary and Further Work

Summary

Model SCJ Level 2 paradigm as Framework and Application

Model of SCJ Level 2 contributes to . . .

Top-down development as a refinement target
Bottom-up development as verification tool

Translation Strategy to generate application models

Models correspond closely to SCJ programs

Validated our models by translating them to CSPm and using
FDR3 to animate and model check

Next Steps

Formalise translation strategy

Improve TightRope to translate all our example applications

26 / 27



A Formal Model of SCJ Level 2

Thank you for listening.

27 / 27


