A Formal Model of SCJ Level 2

A Formal Model of the

Safety-Critical Java Level 2 Paradigm

Matt Luckcuck Ana Cavalcanti Andy Wellings

University of York,
UK

iFM, June 2016

A Formal Model of SCJ Level 2

Outline

@ Java in Safety-Critical Systems

o Safety-Critical Java
o Safety-Critical Java Level 2

Circus

Modelling Approach

Summary and Next Steps

)

27

A Formal Model of SCJ Level 2

Java in Safety-Critical Systems

@ Java not traditionally associated with safety-critical programs
@ More abstraction, less control. . .

@ Garbage collection
@ Poor scheduling control

“The intrinsic safety of the standard language is
irrelevant, it is how safe the use of the language can
be made that matters” — Hatton Safer C (1995)

A Formal Model of SCJ Level 2

Java in Safety-Critical Systems

@ Interesting for safety-critical systems:
@ Strong typing
@ Precise definition
@ Widely understood
@ Language features e.g. exception handling
@ Long standing effort to improve Java. ..
@ Java Community Process's Java Specification Requests

(JSR)

A Formal Model of SCJ Level 2

Java in Safety-Critical Systems

Real-Time Specification for Java (RTSJ)
@ Java Community Process: JSR 1
@ RTSJ addresses some of the Java's problems. . .

@ Region-based memory
@ Control memory usage
@ Better scheduling control

@ Complex for safety-critical programs

A Formal Model of SCJ Level 2

Safety-Critical Java

SCJ Overview

@ International effort lead by The Open Group

Java Community Process: JSR 302

Builds on RTSJ

Aimed at applications that must be certified
Embeds a new, simpler programming paradigm
~ 112 pages of language specification. . .

@ ~ 36 classes and interfaces
@ Does not cover verification

6 /27

A Formal Model of SCJ Level 2

Safety-Critical Java

SCJ Overview

@ Requires a real-time virtual machine
Real-time abstractions from the RTSJ

Restricted hierarchical programming structure

Region-based hierarchical memory

Fixed priority scheduler with Priority Ceiling Emulation

A Formal Model of SCJ Level 2

Safety-Critical Java

Tools

@ SCJ has specific tools for. ..

Memory Safety
Memory Consumption
Execution Time
Schedulability
Program Verification

A Formal Model of SCJ Level 2

Safety-Critical Java

Compliance Levels

o Level 0:

@ Single processor
@ Cyclic executive

o Level 1:

@ Introduce concurrency
@ More release patterns

o Level 2:

Highly concurrent
Multi-processor

Complicated release patterns
Suspension

e 6 o

A Formal Model of SCJ Level 2

Safety-Critical Java

SCJ API

@ Safelet: controls the program and starts the Mission
Sequencer

@ MissionSequencer: instantiates and starts a sequence of
Missions

@ Mission: controls a set of tasks, represented by subclasses of
Managed Schedulable
@ ManagedSchedulable: super-type of all four tasks:
@ PeriodicEventHandler
@ AperiodicEventHandler
@ OneShotEventHandler
@ ManagedThread

10/27

A Formal Model of SCJ Level 2

Safety-Critical Java

Mission Phases

1. Initialize: creates and registers schedulables
2. Execute: simultaneously activate mission’s schedulables

3. Cleanup: reset data structures

11/27

A Formal Model of SCJ Level 2

SCJ Level 2

SCJ Level 2 Features

@ Access to suspension features

@ Access to all Managed Schedulables. . .
@ Uniquely: ManagedThread and MissionSequencer

@ Schedulable Mission Sequencers allow multiple Missions to be
active. ..

@ One active Mission per Mission Sequencer

@ Schedulables from any running Mission may preempt,
based on their priorities

@ No assumption of schedulable from a particular mission
having priority

12 /27

A Formal Model of SCJ Level 2

Modelling Approach

@ Models the Safety-Critical Java (SCJ) Level 2 paradigm using
Circus

Agnostic of Java

Limited treatment of some Exceptions
First formal semantics of SCJ Level 2
Builds on a model of SCJ Level 1. ..

o Level 2 features
@ API changes

e 6 o6 o

Model ignores. . .

@ Scheduling
@ Resources (E.g. Memory)

13 /27

A Formal Model of SCJ Level 2

Model Benefits

Target for refinement-based development of SCJ programs
@ Refinement from abstract to concrete specifications. . .
@ Concrete specifications that capture the SCJ paradigm

@ Correctness by construction

Bottom-Up

Translation from SCJ code to model

o Catches certain program errors. . .
@ Deadlock
@ Divergence
@ Exceptions

14 /27

A Formal Model of SCJ Level 2

Modelling Approach

Circus Language

e Combination of Z and CSP
e Captures both State and Behaviour
@ Organised around Processes

@ State component (Z) to hold variables
@ Actions (Z and CSP) to perform behaviours
@ Main action specifies overall behaviour

@ Communication through CSP channels

15 /27

A Formal Model of SCJ Level 2

Modelling Approach

SCJAPI

SCJ
Framework

\ 4

I_:

Circus
Program

/

SCJ Program o

SCJ
Application

Results

FDR

CSP
Program

16

27

A Formal Model of SCJ Level 2

Modelling Approach

—| SafeletFW

start_toplevel_sequencer

start_mission
$ done_mission
S ——
~ @ | requestTermination
KRS
S e
/\06’0%0‘ initializeCall
S§ initializeRet
{g} signalTerminationCall
< signalTerminationRet

MissionFW

start_mission

done_mission

f
signalTerminationCall

signalTerminationRet

cleanupSchedulableCall

cleanupSchedulableRet

SchedulableMissionSequencerFW

signalTerminationCall

signalTerminationRet

cIeanupSc.h;d.uIableCall

cleanupSchedulableRet

ManagedThreadFW

e
signalTerminationCall

signalTerminationRet

cleanupSchedulableCall

cleanupSchedulableRet

done_toplevel_sequencer

AperiodicEventHandlerFW

PeriodicEventHandlerFW
OneShotEventHandlerFW

T

17 /27

A Formal Model of SCJ Level 2

Modelling Approach

MyMission

initialize()
cleanup()

Application:
Framework: PP .
. . @ Specific
@ eneric MissionFW MyMissionApp
@ Program
@ API classes i
initialize inttialize behaviour

cleanup

18 /27

A Formal Model of SCJ Level 2

Modelling Approach

@ Modelled by an event followed by Chaos

@ Built-in process that diverges
@ Only for paradigm misuse
o Coverage:
@ Thread interrupt
@ Incorrect method parameter
@ Suspension without a lock
@ Locking an object with a lower priority
@ Registering schedulable twice

19/27

A Formal Model of SCJ Level 2

Synchronisation and Suspension

Java Synchronisation and Suspension

@ SCJ restrictions:

@ Only synchronized methods
@ Threads queue in eligibility order
@ Most eligible waiting thread:
@ Highest priority thread. ..
@ That has been waiting for the longest time
@ Suspension is achieved with Object.wait () and
Object.notify (...
@ May only be called on this

20 /27

A Formal Model of SCJ Level 2

Synchronisation and Suspension

Our Model

Extra processes to model synchronisation and suspension. ..
o ObjectFW:

@ Object used as a lock
@ Stores threads waiting on this Object
@ Controls threads trying to lock this Object

@ ThreadFW:

@ Schedulable calling a synchronized method
@ Tracks priority and interrupted status

21/27

A Formal Model of SCJ Level 2

Synchronisation and Suspension

ObjectFW

MissionFW MyM|Ss|onApp
initialize initialize
cleanup cleanup

wait

notify

A Formal Model of SCJ Level 2

Evaluation

@ Close correspondence with the SCJ API

@ Builds on the Level 1 model. ..
@ Level 1 model has been validated against the API

@ Our modelling effort simplified SCJ termination protocol. . .
@ Adopted in v0.96

23 /27

A Formal Model of SCJ Level 2

Evaluation

@ Informal translation strategy, which provides semantics to our
model

@ 10 hand-translated examples covering different release
patterns, synchronisation, and schedulable mission sequencers
@ Prototype tool, TightRoPe t5 produce models from code:

@ Readers—Writers 6 classes ~1.2 seconds
@ Aircraft 25 classes ~2.3 seconds

Translation

24 /27

A Formal Model of SCJ Level 2

Evaluation

Animation and Model Checking

@ Translated models CSPm to use FDRS3. ..
@ Animate the Framework to compare to SCJ API and
running programs
@ Model Check the program specifications to ensure
deadlock- and divergence-freedom

25 /27

A Formal Model of SCJ Level 2

Summary and Further Work

@ Model SCJ Level 2 paradigm as Framework and Application
@ Model of SCJ Level 2 contributes to . ..

@ Top-down development as a refinement target
@ Bottom-up development as verification tool

@ Translation Strategy to generate application models
@ Models correspond closely to SCJ programs

o Validated our models by translating them to CSPm and using
FDR3 to animate and model check

@ Formalise translation strategy

o Improve TightRere 15 translate all our example applications

N,

26 /27

A Formal Model of SCJ Level 2

Thank you for listening.

27 /27

