Safety-Critical Java Level 2: Motivations,
Example Applications and Issues

Andy Wellings Matthew Luckcuck Ana Cavalcanti

University of York

October 4, 2013

Outline

v

Unique Features of Safety-Critical Java Level 2

v

Uses of Level 2

Issues with Level 2

v

Conclusions

v

Unique Features of Level 2

Unique Features

» Nested Mission Sequencers
» ManagedThreads
» Object.wait() and Object.notify()

However. . .

> Level 2 has received little public attention

» No Level 2 implementation
» Very few example applications

Nested Mission Sequencers

Nested Mission Sequencers

» Mission Sequencers can be nested inside a Mission

» This nesting allows multiple Missions to run at once
» One per Mission Sequencer

» Allows more complicated program architectures

» Multi-Mode Applications
» Independent Subsystems

Multi-Mode Applications

Overview

» Allows an application to change its functionality to suit the
context

Components

» Modes: encapsulate all the concurrent activities needed to
control the system during that mode
» Mode Changer: switches between different modes

Multi-Mode Applications — Architecture

Mode

» Mode: marker interface used to identify a Mode

» Modes are represented by Mission objects implementing Mode

Mode Changer

» Mode Changer: interface used to identify a Mode Changer
» changeTo(Mode newMode)
» advanceMode ()
» modeChangePending()
» Mode Changers are represented by MissionSequencers
implementing ModeChanger
> Because the Mode Changer is a Mission Sequencer

» Other Schedulable Objects may run during all modes
» Mode Changes are handled automatically by the infrastructure,
once a Mission is terminated

Multi-Mode Applications — Example Application

Spacecraft

» Three modes: Launch, Cruise, Land
» Each has its own specific concurrent activities

» There are also activities which run throughout all the modes:

» Monitoring the craft’s environment
» Handling the craft’s controls

Multi-Mode Applications — Example Application Structure

B
MainMission : Mission

L

=]
ModeChanger : MissionSequencer

B
CruiseMonttor :
PeriodicEventHandler

B
LaunchMonitor :
PeriodicEventHandler

=]
LaunchHandler : CruiseHandler :
AperiodicEventHandler PeriodicEventHandler

=]
LandMode : EnvironmentMonitor :
Mission PeriodicEventHandler
=]
LandMonitor : ControlHandler :
PeriodicEventHandler AperiodicEventHandier

LandHandler :
AperiodicEventHandler

Figure 1: Object Diagram showing the structure of the Spacecraft

example application

Multi-Mode Applications — Could Level 1 Do This?

Could Level 1 Do This?

> Yes, but. ..

» Any concurrent activities that run over all Modes would
require duplication ...

> ...which would require their state to be stored in Mission
Memory

» Could not be included in more complex systems

> If Level 2 is available it provides more flexibility

Independent Subsystems

Overview
» Allows an application to encapsulate and control disparate
concerns into subsystems
» Especially useful if they are developed independently of each
other
Components

» A Subsystem Module encapsulates the Schedulable Objects
required by a subsystem

Independent Subsystems

Architecture

» A Subsystem Module is represented by:
» A Mission Sequencer, which controls. ..
» A Mission, which controls. ..
» The Schedulable Objects for that subsystem
» Multiple Subsystem Modules are controlled by a Mission
representing the application

Independent Subsystems — Example Application

Train Control (Hunt and Nilsen, 2012 [1])

» Rail network is divided into segments
» Train has to communicate with central authority to request
authorisation to enter track segments
» Application contains four subsystems:
» Communications
» Navigation
» Time
» Train Controls
» Each of these is a Subsystem Module

» Communications and Navigation have their own subsystems

Independent Subsystems — Example Application Structure

=
TrainMission : Mission
= = = =
CommunicationsServiceSequencer : NavigationServicesSequencer : TimeServicesSequncer : TrainControllerSequencer :
MissionSequencer MissionSequencer MissionSequencer MissionSequencer

B

NavigationService :
M ission

NavigationOversight : GPSDriver :
Mana dThread PeriodicEventHandler

Figure 2: Object Diagram showing the structure of the Train Control
example application

Independent Subsystems — Could Level 1 Do This?

Could Level 1 Do This?
> Yes, but. ..
» Schedulable Objects would all be contained by one Mission

> If Level 2 is available, it provides better encapsulation and
control

Managed Threads and Wait/Notify

Overview

> ManagedThread has no release parameters, only a priority
» Object.wait() and Object.notify () provide simple
suspension

» Allows the programming of paradigms unique, within SCJ, to
Level 2
» Unusual Release Patterns
» Encapsulation of State

Unusual Release Patterns

Unusual Release Patterns

» Adapting Managed Threads allows release patterns not
available in Levels 0 or 1
» Periodic Thread initially released by a software event
» Producer-Consumer Threads
» Run-as-Fast-as-Possible Threads

Periodic Thread

Overview

v

Class PeriodicThread inherits from ManagedThread
Modifies the run method:

1. Blocks when run is entered

2. Waits until its first release

3. Then enters a loop which calls work ()

4. When work() returns then thread delays for its period
5. Then the loop begins again, calling work

v

v

work () now performs the function of the run() method in a
standard thread

v

Not available at Levels 0 or 1 due to lack of Object.wait ()
and Object.notify()

Periodic Thread

Wait Until First Release

1| private synchronized boolean waitFirstRelease (){
2 try { wait();

3

4| catch(InterruptedException ie){

5 return false;

6}

7 return true;

8|}

Listing 1: The waitFirstRelease method of Periodic Thread

Periodic Thread

First Release

1| public synchronized void firstRelease (){

2

3 nextRelease = Clock. getRealtimeClock ()

4 .getTime(nextRelease);

5 nextDeadline.set(nextRelease

6 .getMilliseconds () + deadline);

7 deadlineMissDetection

8 .scheduleNextReleaseTime(nextDeadline);
9 notify();

10| }

Listing 2: The firstRelease method of Periodic Thread

Periodic Thread

1| public final void run()

214

3 if (waitFirstRelease())

4 {

5 while (! myMission.terminationPending())

6 {

7 nextRelease.add(periodMilis, periodNanos);

8

9 work () ;

10

11 nextDeadline.add(periodMilis, periodNanos);

12 deadlineMissDetection .
scheduleNextReleaseTime(nextDeadline);

13 // waitForNextPeriod

14 Services.delay(nextRelease);

15 }

16 }

17]}

Listing 3: The run method of periodic thread

Producer-Consumer Threads

Overview

» Producers and Consumers which communicate via a bounded
buffer
» Requires blocking

» Producers block when the buffer is full
» Consumers block when the buffer is empty

SCJ Level 2

» This cannot be done at Levels 0 or 1
» Object.wait() and Object.notify() only available at
Level 2
» SCJ does not support a queue of outstanding release events for
AperiodicEventHandlers

Run as Fast as Possible

Overview

» Low priority background activities
» No pattern of release
» Thread is descheduled and rescheduled as required

> Runs as fast as possible when it does have the processor

Example

> A Logging Thread

» Runs as fast as possible to log system activity in the
background

Encapsulation of State

Overview
» Schedulable objects enter their memory area during their
release and exit when they return from...
» Handlers: handleEvent ()
» Threads: run()
» Managed Thread memory area is active for the length of
run()
» Can be extended to suit the program’s needs:

» Loop constructs
» Blocking

Encapsulation of State

Managed Thread

» Managed Threads can be used to perform activities requiring
state
» Handlers would require an outer memory area to be used
» More visible than needed
» Managed Threads can store this state locally
> better encapsulation

Encapsulation of State

Temporary Private Memory Area

» If the Managed Thread allocates large amounts of memory

» We can make these allocations in a Temporary Private
Memory Area

» Data needed for the next iteration must be allocated in the
Managed Thread's memory area

Encapsulation of State

1| public final void run(){

2 if (waitFirstRelease()) {

3 while (! myMission . terminationPending ()){

4 nextRelease.add(periodMilis , periodNanos);
5

6

ManagedMemory . enterPrivateMemory (
getPrivateMemorySize () ,runnableThatCallsWork)

1

7

8 nextDeadline.add(periodMilis , periodNanos);

9 deadlineMissDetection.scheduleNextReleaseTime(
nextDeadline);

10 // waitForNextPeriod

11 Services.delay(nextRelease);

12 }

13|}

14|}

Listing 4: Periodic Thread run method with Private Memory

Encapsulation of State

Dealing With Scope

» The work() method is now executed in Private Memory

» Data that is not temporary must be explicitly allocated in the
thread’s memory area:

[y

PersistentData data = (PersistentData) threadMemory
.newlnstance(PersistentData.class);

Listing 5: Allocation in the Thread's Memory Area

SCJ Level 2 Issues

» Schedulable Objects and Mission Termination
» Mission Sequencer Deadlines

» Further Support for Subsystems

SCJ Level 2 Issues

Managed Schedulable Object Termination

» According to the SCJ language specification, during Mission
termination the infrastructure will. ..

» “... wait for all the Managed Schedulable Objects associated
with this Mission to terminate”
» If a Managed Schedulable Object is blocked at this point, it
will never terminate

SCJ Level 2 Issues

Mission Sequencer Deadlines

» Mode changes often have associated deadlines
> We suggest adding three methods to MissionSequencer

» requestTerminationOfCurrentMission(AbsoluteTime
deadline, AperiodicEventHandler
deadlinMissHandler)

» requestMissionChange (AbsoluteTime deadline,
AperiodicEventHandler deadlinMissHandler)

» getCurrentSequencer ()

SCJ Level 2 Issues

Further Support for Subsystems

» Support for composing the timing constraints of Subsystems
» Two aspects of hierarchical scheduling needed:

» Multi-level priorities
» CPU budgets

Further Support for Subsystems

Priorities

» Desired outcome: when a Subsystem has the highest priority,
all of the Schedulable Objects of that Subsystem will run
> In SCJ a two-level priority scheme is needed
» A Mission Sequencer is given a priority
» Each Managed Schedulable Object is given a priority
» Ensure all Managed Schedulable Objects have a priority. . .

» Greater than or equal to the priority of their Mission Sequencer
and. ..

» Less than the priority of the Mission Sequencer with the next
highest priority

Further Support for Subsystems
Budgets

» Desired Outcome: Managed Schedulable Objects to run only
when their Subsystem has remaining budget

» RTSJ can support this with Processing Group Parameters
(PGP)
» If all Schedulable Objects are running on one processor
» Support in SCJ could come from an extension
implementing. ..

public class ProcessingGroupParameters {

1

2

3 public ProcessingGroupParameters (
4 HighResolutionTime start,

5 RelativeTime period,

6 RelativeTime budget)

7

}

Listing 6: Proposed Processing Group Parameters Object

Further Support for Subsystems

» ...allowing SCJ to track simple budgets

» Constructors could be added to the Mission Sequencer to
accept PGP and an integer to bound the priority range of the
Managed Schedulable Objects

» But...

» Requires SCJ to be extended to honour these budgets

» Still requires Managed Schedulable Objects to run on a single
processor

Conclusion

» SCJ Level 2 has received little public attention

» Clear from the SCJ specification what constitutes a Level 2
application

» Far from clear when SCJ Level 2 should be used

Conclusion

Ups

» We have examined the unique features of Level 2 and found
them to be useful

» Control

» Complexity Management
» Encapsulation

Downs

» Deficiencies in Level 2 features

» Termination of blocked Schedulable Objects during the
termination of Missions

» Deadlines on Mission transition

» Further Support for Subsystems

Questions?

HunT, J., AND NILSEN, K.
Safety-critical java: The mission approach.
In Distributed, Embedded and Real-time Java Systems, M. T.

Higuera-Toledano and A. J. Wellings, Eds. Springer US, 2012,
pp. 199-233.

u]

o)
I

i
it

