
Safety-Critical Java Level 2: Motivations,
Example Applications and Issues

Andy Wellings Matthew Luckcuck Ana Cavalcanti

University of York

October 4, 2013

Outline

I Unique Features of Safety-Critical Java Level 2

I Uses of Level 2

I Issues with Level 2

I Conclusions

Unique Features of Level 2

Unique Features

I Nested Mission Sequencers

I ManagedThreads

I Object.wait() and Object.notify()

However. . .

I Level 2 has received little public attention
I No Level 2 implementation
I Very few example applications

Nested Mission Sequencers

Nested Mission Sequencers

I Mission Sequencers can be nested inside a Mission
I This nesting allows multiple Missions to run at once

I One per Mission Sequencer

I Allows more complicated program architectures
I Multi-Mode Applications
I Independent Subsystems

Multi-Mode Applications

Overview

I Allows an application to change its functionality to suit the
context

Components

I Modes: encapsulate all the concurrent activities needed to
control the system during that mode

I Mode Changer: switches between different modes

Multi-Mode Applications – Architecture

Mode

I Mode: marker interface used to identify a Mode

I Modes are represented by Mission objects implementing Mode

Mode Changer

I Mode Changer: interface used to identify a Mode Changer
I changeTo(Mode newMode)
I advanceMode()
I modeChangePending()

I Mode Changers are represented by MissionSequencers
implementing ModeChanger

I Because the Mode Changer is a Mission Sequencer
I Other Schedulable Objects may run during all modes
I Mode Changes are handled automatically by the infrastructure,

once a Mission is terminated

Multi-Mode Applications – Example Application

Spacecraft

I Three modes: Launch, Cruise, Land

I Each has its own specific concurrent activities
I There are also activities which run throughout all the modes:

I Monitoring the craft’s environment
I Handling the craft’s controls

Multi-Mode Applications – Example Application Structure

Figure 1: Object Diagram showing the structure of the Spacecraft
example application

Multi-Mode Applications – Could Level 1 Do This?

Could Level 1 Do This?

I Yes, but. . .
I Any concurrent activities that run over all Modes would

require duplication . . .
I . . . which would require their state to be stored in Mission

Memory

I Could not be included in more complex systems

I If Level 2 is available it provides more flexibility

Independent Subsystems

Overview

I Allows an application to encapsulate and control disparate
concerns into subsystems

I Especially useful if they are developed independently of each
other

Components

I A Subsystem Module encapsulates the Schedulable Objects
required by a subsystem

Independent Subsystems

Architecture

I A Subsystem Module is represented by:
I A Mission Sequencer, which controls. . .
I A Mission, which controls. . .
I The Schedulable Objects for that subsystem

I Multiple Subsystem Modules are controlled by a Mission

representing the application

Independent Subsystems – Example Application

Train Control (Hunt and Nilsen, 2012 [1])

I Rail network is divided into segments

I Train has to communicate with central authority to request
authorisation to enter track segments

I Application contains four subsystems:
I Communications
I Navigation
I Time
I Train Controls

I Each of these is a Subsystem Module

I Communications and Navigation have their own subsystems

Independent Subsystems – Example Application Structure

Figure 2: Object Diagram showing the structure of the Train Control
example application

Independent Subsystems – Could Level 1 Do This?

Could Level 1 Do This?

I Yes, but. . .
I Schedulable Objects would all be contained by one Mission

I If Level 2 is available, it provides better encapsulation and
control

Managed Threads and Wait/Notify

Overview

I ManagedThread has no release parameters, only a priority

I Object.wait() and Object.notify() provide simple
suspension

I Allows the programming of paradigms unique, within SCJ, to
Level 2

I Unusual Release Patterns
I Encapsulation of State

Unusual Release Patterns

Unusual Release Patterns

I Adapting Managed Threads allows release patterns not
available in Levels 0 or 1

I Periodic Thread initially released by a software event
I Producer-Consumer Threads
I Run-as-Fast-as-Possible Threads

Periodic Thread

Overview

I Class PeriodicThread inherits from ManagedThread

I Modifies the run method:

1. Blocks when run is entered
2. Waits until its first release
3. Then enters a loop which calls work()

4. When work() returns then thread delays for its period
5. Then the loop begins again, calling work

I work() now performs the function of the run() method in a
standard thread

I Not available at Levels 0 or 1 due to lack of Object.wait()
and Object.notify()

Periodic Thread

Wait Until First Release

1 p r i v a t e synchron ized boolean wa i t F i r s t R e l e a s e () {
2 t r y { wa i t () ;
3 }
4 catch (I n t e r r u p t e dE x c e p t i o n i e) {
5 re tu rn f a l s e ;
6 }
7 re tu rn t rue ;
8 }

Listing 1: The waitFirstRelease method of Periodic Thread

Periodic Thread

First Release

1 pub l i c synchron ized vo id f i r s t R e l e a s e () {
2
3 n e x tRe l e a s e = Clock . g e tRea l t imeC l o ck ()
4 . getTime (n e x tRe l e a s e) ;
5 n e x tDead l i n e . s e t (n e x tRe l e a s e
6 . g e tM i l l i s e c o n d s () + d e a d l i n e) ;
7 d e a d l i n eM i s sDe t e c t i o n
8 . s chedu l eNex tRe l ea seT ime (n e x tDead l i n e) ;
9 n o t i f y () ;

10 }

Listing 2: The firstRelease method of Periodic Thread

Periodic Thread

1 pub l i c f i n a l vo id run ()
2 {
3 i f (w a i t F i r s t R e l e a s e ())
4 {
5 whi le (! myMiss ion . t e rm ina t i onPend i ng ())
6 {
7 n e x tRe l e a s e . add (p e r i o dM i l i s , pe r iodNanos) ;
8
9 work () ;

10
11 nex tDead l i n e . add (p e r i o dM i l i s , pe r iodNanos) ;
12 d e a d l i n eM i s sDe t e c t i o n .

s chedu l eNex tRe l ea seT ime (ne x tDead l i n e) ;
13 // wa i tFo rNex tPe r i od
14 S e r v i c e s . d e l a y (n e x tRe l e a s e) ;
15 }
16 }
17 }

Listing 3: The run method of periodic thread

Producer-Consumer Threads

Overview

I Producers and Consumers which communicate via a bounded
buffer

I Requires blocking
I Producers block when the buffer is full
I Consumers block when the buffer is empty

SCJ Level 2

I This cannot be done at Levels 0 or 1
I Object.wait() and Object.notify() only available at

Level 2
I SCJ does not support a queue of outstanding release events for

AperiodicEventHandlers

Run as Fast as Possible

Overview

I Low priority background activities

I No pattern of release

I Thread is descheduled and rescheduled as required

I Runs as fast as possible when it does have the processor

Example

I A Logging Thread

I Runs as fast as possible to log system activity in the
background

Encapsulation of State

Overview

I Schedulable objects enter their memory area during their
release and exit when they return from...

I Handlers: handleEvent()
I Threads: run()

I Managed Thread memory area is active for the length of
run()

I Can be extended to suit the program’s needs:
I Loop constructs
I Blocking

Encapsulation of State

Managed Thread

I Managed Threads can be used to perform activities requiring
state

I Handlers would require an outer memory area to be used
I More visible than needed

I Managed Threads can store this state locally
I better encapsulation

Encapsulation of State

Temporary Private Memory Area

I If the Managed Thread allocates large amounts of memory

I We can make these allocations in a Temporary Private
Memory Area

I Data needed for the next iteration must be allocated in the
Managed Thread’s memory area

Encapsulation of State

1 pub l i c f i n a l vo id run () {
2 i f (w a i t F i r s t R e l e a s e ()) {
3 whi le (! myMiss ion . t e rm ina t i onPend i ng ()) {
4 n e x tRe l e a s e . add (p e r i o dM i l i s , pe r iodNanos) ;
5
6 ManagedMemory . ente rPr i va teMemory (

ge tPr i va teMemoryS i ze () , runnab l eThatCa l l sWork)
;

7
8 ne x tDead l i n e . add (p e r i o dM i l i s , pe r iodNanos) ;
9 d e a d l i n eM i s sDe t e c t i o n . s chedu l eNex tRe l ea seT ime (

ne x tDead l i n e) ;
10 // wa i tFo rNex tPe r i od
11 S e r v i c e s . d e l a y (n e x tRe l e a s e) ;
12 }
13 }
14 }

Listing 4: Periodic Thread run method with Private Memory

Encapsulation of State

Dealing With Scope

I The work() method is now executed in Private Memory

I Data that is not temporary must be explicitly allocated in the
thread’s memory area:

1 Pe r s i s t e n tDa t a data = (Pe r s i s t e n tDa t a) threadMemory
. new Ins tance (P e r s i s t e n tDa t a . c l a s s) ;

Listing 5: Allocation in the Thread’s Memory Area

SCJ Level 2 Issues

I Schedulable Objects and Mission Termination

I Mission Sequencer Deadlines

I Further Support for Subsystems

SCJ Level 2 Issues

Managed Schedulable Object Termination

I According to the SCJ language specification, during Mission
termination the infrastructure will. . .

I “. . . wait for all the Managed Schedulable Objects associated
with this Mission to terminate”

I If a Managed Schedulable Object is blocked at this point, it
will never terminate

SCJ Level 2 Issues

Mission Sequencer Deadlines

I Mode changes often have associated deadlines
I We suggest adding three methods to MissionSequencer

I requestTerminationOfCurrentMission(AbsoluteTime

deadline, AperiodicEventHandler

deadlinMissHandler)
I requestMissionChange(AbsoluteTime deadline,

AperiodicEventHandler deadlinMissHandler)
I getCurrentSequencer()

SCJ Level 2 Issues

Further Support for Subsystems

I Support for composing the timing constraints of Subsystems
I Two aspects of hierarchical scheduling needed:

I Multi-level priorities
I CPU budgets

Further Support for Subsystems

Priorities

I Desired outcome: when a Subsystem has the highest priority,
all of the Schedulable Objects of that Subsystem will run

I In SCJ a two-level priority scheme is needed
I A Mission Sequencer is given a priority
I Each Managed Schedulable Object is given a priority

I Ensure all Managed Schedulable Objects have a priority. . .
I Greater than or equal to the priority of their Mission Sequencer

and. . .
I Less than the priority of the Mission Sequencer with the next

highest priority

Further Support for Subsystems

Budgets

I Desired Outcome: Managed Schedulable Objects to run only
when their Subsystem has remaining budget

I RTSJ can support this with Processing Group Parameters
(PGP)

I If all Schedulable Objects are running on one processor

I Support in SCJ could come from an extension
implementing. . .

1 pub l i c c l a s s Proce s s i ngGroupParamete r s {
2
3 pub l i c Proce s s i ngGroupParamete r s (
4 H ighReso lu t ionT ime s t a r t ,
5 Re l a t i v eT ime pe r i od ,
6 Re l a t i v eT ime budget)
7 . . . }

Listing 6: Proposed Processing Group Parameters Object

Further Support for Subsystems

I . . . allowing SCJ to track simple budgets

I Constructors could be added to the Mission Sequencer to
accept PGP and an integer to bound the priority range of the
Managed Schedulable Objects

I But. . .
I Requires SCJ to be extended to honour these budgets
I Still requires Managed Schedulable Objects to run on a single

processor

Conclusion

I SCJ Level 2 has received little public attention

I Clear from the SCJ specification what constitutes a Level 2
application

I Far from clear when SCJ Level 2 should be used

Conclusion

Ups

I We have examined the unique features of Level 2 and found
them to be useful

I Control
I Complexity Management
I Encapsulation

Downs

I Deficiencies in Level 2 features
I Termination of blocked Schedulable Objects during the

termination of Missions
I Deadlines on Mission transition
I Further Support for Subsystems

Questions?

Hunt, J., and Nilsen, K.
Safety-critical java: The mission approach.
In Distributed, Embedded and Real-time Java Systems, M. T.
Higuera-Toledano and A. J. Wellings, Eds. Springer US, 2012,
pp. 199–233.

