
Using Circus to Verify Safety-Critical Java Level 2 Programs
Matt Luckcuck

10th ofMay 2018

Supervisors:
Ana Cavalcanti and AndyWellings

1 / 45



Using Circus to Verify Safety-Critical Java Level 2 Programs
Matt Luckcuck

10th ofMay 2018

Supervisors:
Ana Cavalcanti and AndyWellings

1 / 45



Using Circus to Verify Safety-Critical Java Level 2 Programs
Matt Luckcuck

10th ofMay 2018

Supervisors:
Ana Cavalcanti and AndyWellings

1 / 45



Outline

Outline
Java in Safety-Critical Systems
Safety-Critical Java

Safety-Critical Java Level 2
Modelling and Translation

Circus Intro
Model
Translation

Model Utility
Summary

2 / 45



Java in Safety-Critical Systems

3 / 45



Java in Safety-Critical Systems

Java
Java not traditionally associated with safety-critical programs
More abstraction, less control. . .

Garbage collectedmemorymanagement
Poor scheduling control

“The intrinsic safety of the standard language is irrelevant, it is how safe the use
of the language can bemade that matters” –Hatton, Safer C (1995)

4 / 45



Java in Safety-Critical Systems

Java
Java not traditionally associated with safety-critical programs
More abstraction, less control. . .

Garbage collectedmemorymanagement
Poor scheduling control

“The intrinsic safety of the standard language is irrelevant, it is how safe the use
of the language can bemade that matters” –Hatton, Safer C (1995)

4 / 45



Java in Safety-Critical Systems

Java
Interesting for safety-critical systems:

Strong typing
Precise definition
Widely understood
Language features e.g. exception handling

Long standing effort to improve Java. . .
Java Community Process’s Java Specification Requests (JSR)

5 / 45



Java in Safety-Critical Systems

Real-Time Specification for Java (RTSJ)
Java Community Process: JSR 1
RTSJ addresses some of the Java’s problems. . .

Region-basedmemory
Better memory control
Better scheduling control

Complex for safety-critical programs

6 / 45



Safety-Critical Java

7 / 45



Safety-Critical Java

Safety-Critical Java (SCJ). . .
New language for applications that must be certified

Aeroplanes
Robots
Etc.

Java Community Process: JSR 302
Builds on the Real-Time Specification for Java (RTSJ)
Simpler, hierarchical programming paradigm
(Natural) language specification∼ 112 pages. . .

Defines∼ 36 classes and interfaces
Does not cover verification

8 / 45



Safety-Critical Java

SCJOverview
Requires a real-time virtual machine

Borrows from the RTSJ. . .

Real-time abstractions
Memory areas

Region-based hierarchical memorymanagement
Fixed priority scheduling with Priority Ceiling Emulation
Three feature sets (compliance levels)

Level 0
Level 1
Level 2

9 / 45



Safety-Critical Java

SCJOverview
Requires a real-time virtual machine
Borrows from the RTSJ. . .

Real-time abstractions
Memory areas

Region-based hierarchical memorymanagement
Fixed priority scheduling with Priority Ceiling Emulation
Three feature sets (compliance levels)

Level 0
Level 1
Level 2

9 / 45



Safety-Critical Java

SCJOverview
Requires a real-time virtual machine
Borrows from the RTSJ. . .

Real-time abstractions
Memory areas

Region-based hierarchical memorymanagement

Fixed priority scheduling with Priority Ceiling Emulation
Three feature sets (compliance levels)

Level 0
Level 1
Level 2

9 / 45



Safety-Critical Java

SCJOverview
Requires a real-time virtual machine
Borrows from the RTSJ. . .

Real-time abstractions
Memory areas

Region-based hierarchical memorymanagement
Fixed priority scheduling with Priority Ceiling Emulation

Three feature sets (compliance levels)
Level 0
Level 1
Level 2

9 / 45



Safety-Critical Java

SCJOverview
Requires a real-time virtual machine
Borrows from the RTSJ. . .

Real-time abstractions
Memory areas

Region-based hierarchical memorymanagement
Fixed priority scheduling with Priority Ceiling Emulation
Three feature sets (compliance levels)

Level 0
Level 1
Level 2

9 / 45



Safety-Critical Java

SCJOverview
Requires a real-time virtual machine
Borrows from the RTSJ. . .

Real-time abstractions
Memory areas

Region-based hierarchical memorymanagement
Fixed priority scheduling with Priority Ceiling Emulation
Three feature sets (compliance levels)

Level 0
Level 1
Level 2

9 / 45



Safety-Critical Java

Compliance Levels
Level 0:

Single processor
Cyclic executive

Level 1:
Introduce concurrency
More release patterns

Level 2:
Highly concurrent
Multi-processor
Complicated release patterns
Suspension

Release Pattern
When a process
becomes available for
execution

10 / 45



Safety-Critical Java

SCJ API
Safelet: controls the program and starts theMission Sequencer
MissionSequencer: instantiates and starts a sequence ofMissions
Mission: controls a set of processes, represented by subclasses ofManaged
Schedulable
ManagedSchedulable: super-type of all four process types. . .

PeriodicEventHandler

AperiodicEventHandler

OneShotEventHandler

ManagedThread

11 / 45



Safety-Critical Java

Mission Sequencer

Start

Terminate

Mission 
Execution

Mission 
Initialization

Select 
Mission

No

Yes

No

Yes

 Sequence
  Ended?

Mission 
Cleanup

 Continue
Sequence?

Mission Phases
1. Initialize: creates and registers schedulables
2. Execute: simultaneously activatemission’s schedulables
3. Cleanup: reset data structures

12 / 45



Safety-Critical Java

Mission

Schedulable 
Object

Safelet

Mission Sequencer

13 / 45



SCJ Level 2

SCJ Level 2 Features
Access to Java suspensionmethods

wait(), notify(), etc
Access to all release patterns:

periodic
aperiodic
run-once after a time offset
run-to-completion

Complex program structures due tomore concurrent components
MultipleMission Sequencers enable multipleMissions to be active
One activeMission perMission Sequencer
Schedulables from any activeMissionmay preempt, based on their priorities

14 / 45



SCJ Level 2

SCJ Level 2 Features
Access to Java suspensionmethods

wait(), notify(), etc
Access to all release patterns:

periodic
aperiodic
run-once after a time offset
run-to-completion

Complex program structures due tomore concurrent components
MultipleMission Sequencers enable multipleMissions to be active
One activeMission perMission Sequencer
Schedulables from any activeMissionmay preempt, based on their priorities

14 / 45



SCJ Level 2

SCJ Level 2 Features
Access to Java suspensionmethods

wait(), notify(), etc
Access to all release patterns:

periodic
aperiodic
run-once after a time offset
run-to-completion

Complex program structures due tomore concurrent components
MultipleMission Sequencers enable multipleMissions to be active
One activeMission perMission Sequencer
Schedulables from any activeMissionmay preempt, based on their priorities

14 / 45



SCJ Level 2

SCJ Level 2 Features
Access to Java suspensionmethods

wait(), notify(), etc
Access to all release patterns:

periodic
aperiodic
run-once after a time offset
run-to-completion

Complex program structures due tomore concurrent components
MultipleMission Sequencers enable multipleMissions to be active
One activeMission perMission Sequencer
Schedulables from any activeMissionmay preempt, based on their priorities

14 / 45



SCJ Level 2

Mission

Mission SequencerSchedulable 
Object

Mission

Safelet

Mission Sequencer

Schedulable 
Object

15 / 45



SCJ Level 2

Mission

Mission SequencerSchedulable 
Object

Mission

Safelet

Mission Sequencer

Schedulable 
Object

Level 2

15 / 45



Modelling and Translation

16 / 45



Modelling Approach

Circus Language
Combination of Z andCSP

Captures both State and Behaviour
Organised around Processes

State component (Z) to hold variables
Actions (Z andCSP) to perform behaviours
Main action specifies overall behaviour

Communication throughCSP channels

17 / 45



Modelling Approach
processP =̂

State
var1 : B
var2 : Z

Init
State ′
var1′ = False
var2′ = 42

Action1 =̂ chan1−→ Skip

Action2 =̂ chan2−→ Skip

• Action1 @ Action2
18 / 45



Modelling Approach
Building theModel

Two Components:
SCJ’s Application Programming Interface (API)
Templates for SCJ Programs

Agnostic of Java
Combine the two components to capture a program’s behaviour
Enables program verification

via CSP’sModel-Checker:

FDR

19 / 45



Modelling Approach
Building theModel

Two Components:
SCJ’s Application Programming Interface (API)
Templates for SCJ Programs

Agnostic of Java
Combine the two components to capture a program’s behaviour
Enables program verification

via CSP’sModel-Checker: FDR

19 / 45



Modelling Approach
Building theModel

Two Components:
SCJ’s Application Programming Interface (API)
Templates for SCJ Programs

Agnostic of Java
Combine the two components to capture a program’s behaviour
Enables program verification

via CSP’sModel-Checker: FDR

19 / 45



Modelling Approach
Building theModel

Two Components:
SCJ’s Application Programming Interface (API)
Templates for SCJ Programs

Agnostic of Java
Combine the two components to capture a program’s behaviour
Enables program verification

via CSP’sModel-Checker: FDR

19 / 45



Modelling Approach

Model
Captures the SCJ Level 2 paradigm

∼ 3300 lines of Circus
Abstracts away from Java. . .

Scheduling
Resources (E.g. Memory)
Exceptions

Expands on amodel of SCJ Level 11(∼ 700 lines)
Level 2 features
API changes
Also Level 1 features not covered

1Zeyda et al. Circus Models for Safety-Critical Java Programs. Computer Journal (2014)
20 / 45



Modelling Approach

ResultsSCJ 
Framework

SCJ
Application

Circus
Program

SCJ API

SCJ Program

CSP
Program

FDR

21 / 45



Translation

Overview
Extended existing Level 1 translation tool

Level 2 Tool: TightRope
Automatic generation of models from Level 2 programs

Translation Using TightRope
Compiles the program to generate Abstract Syntax Trees (ASTs)

No annotations needed, unlike Level 1 tool
Extract program-specific information
Drop the information into gaps in a template

Using FreeMarker template engine
22 / 45



Translation

Translation Using TightRope
TightRope, producesmodels from code:

Producers–Consumers 6 classes ∼1.2 seconds
Aircraft 25 classes ∼2.3 seconds

. . . Some expression rewriting required
Translating arbitrary Java code

23 / 45



Model Utility

24 / 45



Model Utility

Level 2 Problems. . .
Modelling Level 2 exposed problemswith termination2 :
1 Termination of MissionSequencers
2 Termination of waiting threads

No one had thought hard enough about Level 2

2Luckcuck,Wellings, Cavalcanti. Safety-Critical Java: Level 2 in Practice. Concurrency and
Computation: Practice and Experience. (2017)

25 / 45



Model Utility

Termination of Mission Sequencers

Originally, any schedulable could terminate anymission sequencer
Intended to allow a schedulable to terminate the program
But with Level 2 havingmultiple activemissions. . .

Poor link to startup structure
Breaks encapsulation of Mission
Chaotic

26 / 45



Model Utility

Mission

Mission SequencerSchedulable 
Object

Mission

Safelet

Mission Sequencer

Schedulable 
Object

27 / 45



Model Utility

Mission

Mission SequencerSchedulable 
Object

Mission

Safelet

Mission Sequencer

Schedulable 
Object

terminate

27 / 45



Model Utility

Mission

Mission SequencerSchedulable 
Object

Mission

Safelet

Mission Sequencer

Schedulable 
Object

terminate

27 / 45



Model Utility

Mission

Mission SequencerSchedulable 
Object

Mission

Safelet

Mission Sequencer

Schedulable 
Object

terminate

27 / 45



Model Utility

Termination of Mission Sequencers

Proposed that when a a Mission terminates it tells its MissionSequencer if itshould terminate too
Mirrors startup
Restores encapsulation of Mission

Usedmymodel to compare original and proposed protocol
Checked that the proposed protocol works
Showed that it had 94.5% fewer states
Adopted SCJ v0.96

28 / 45



Model Utility

Termination of waiting threads
According to the language specification, duringMission termination theinfrastructure will. . .

‘. . . wait for all theManaged Schedulable Objects associated with thisMission to
terminate’

If a schedulable is blocked at this point, it will never terminate

29 / 45



Model Utility

Termination ofWaiting Threads
Proposed either:
a) SCJ Interrupts all schedulables during termination, or;
b) Add a newmethod to the schedulable interface that programmers can use to
interrupt a blocked schedulable

SCJ specification now highlights termination in Level 2:
Second proposal, but in an existingmethod
Provides a uniformway of handling custom termination behaviour

30 / 45



Model Utility

Top-DownDevelopment
Target for refinement-based development of SCJ programs3

Correct-by-construction approach
Refines abstract specifications to concrete specifications. . .

That capture the SCJ paradigm
Enables this, but out of scope

3Cavalcanti, Sampaio, andWoodcock. A Refinement Strategy for Circus. Formal Aspects of
Computing. (2003)

31 / 45



Model Utility

Bottom-UpDevelopment
Translation from SCJ code tomodel, for program verification

Model-Checking and Animation
Catches certain program errors. . .

Deadlock
Divergence/Exceptions

32 / 45



ProgramVerification

Overview
Wewant to be able to use this model to verify programs. . .
But there is nomodel checker for Circus
So, we use industry-proven CSPmodel checker FDR3. . .
But, this requires another translation. . .

33 / 45



ProgramVerification

WhyUse Circus?
Tight integration of state and behaviour

34 / 45



ProgramVerification

Circus to CSPm
CSPm is themachine-readable version of CSP, used by FDR
Informal translation from Circus to CSPm

State in Circus processes becomes state process in CSPm
Most behaviour in Circus translates straight into CSPm

However, treatment of state in initial translations produced intractable
models. . .

35 / 45



ProgramVerification

36 / 45



ProgramVerification

36 / 45



ProgramVerification

36 / 45



ProgramVerification

37 / 45



ProgramVerification

37 / 45



ProgramVerification

Personal Best
226GB on csresearch0 in 1 process

38 / 45



ProgramAnalysis
Circus to CSPm

Improved the CSPmmodel with the help of TomGibson-Robinson (FDR’s
maintainer) at Oxford University
Building distributed CSP processes of ‘complex’ data structures:

Sets
Sequences
Priority Queue

Mademodel-checking tractable. . .

Process controlling a set of value
(Add or remove a number)

value= {0..20}

P1 Compiled 7438.52s (∼2hrs)
Checked 3.84s

P2 Compiled 0.01s
Checked 4.41s

39 / 45



ProgramVerification

Animation andModel Checking in FDR3
Animation:

Step throughmodel to compare to API or running program
Model-Checking:

Deadlock- and divergence-freedom
Enables custom checks: exceptions, particular program behaviours, etc

40 / 45



Summary

41 / 45



Model Summary

Model
Close correspondence with the SCJ API

Validated against API
Extends existing Level 1model. . .

Validated against API
Ourmodelling effort simplified SCJ’s termination protocol. . .

Adopted in v0.96

42 / 45



ProgramVerification Summary

ProgramAnalysis
Modelling approach enables verification technique
Translation to CSP, for FDR

Circus is close to CSP
Scope for automation

Recent tool that automates Circus to CSPm translation4
Limitations on input models
I suspect similar problemswith state explosion

4Beg and Butterfield. Development of a Prototype Translator from Circus to CSPM. ICOSST (2015)
43 / 45



FutureWork

FutureWork
More general translation approach

Less expression rewriting
Automate Circus to CSPm translation

Dealing with data
Simplify customised checks

44 / 45



Thank you for listening

45 / 45


	Java in Safety-Critical Systems
	Safety-Critical Java
	Modelling and Translation
	Model Utility
	Summary

