Using Circus to Verify Safety-Critical Java Level 2 Programs

Matt Luckcuck

10th of May 2018

1/45

Using Circus to Verify Safety-Critical Java Level 2 Programs

Matt Luckcuck

10th of May 2018

Supervisors:
Ana Cavalcanti and Andy Wellings

1/45

Using Circus to Verify Safety-Critical Java Level 2 Programs

Matt Luckcuck

10th of May 2018

Supervisors:
Ana Cavalcanti and Andy Wellings

1/45

Outline

m Javain Safety-Critical Systems
m Safety-Critical Java

m Safety-Critical Java Level 2
m Modelling and Translation

m Circus Intro
m Model
m Translation

m Model Utility
m Summary

2/45

Javain Safety-Critical Systems

3/45

Javain Safety-Critical Systems

Java

m Java not traditionally associated with safety-critical programs
m More abstraction, less control...

m Garbage collected memory management
m Poor scheduling control

4/45

Javain Safety-Critical Systems

Java

m Java not traditionally associated with safety-critical programs
m More abstraction, less control...

m Garbage collected memory management
m Poor scheduling control

“The intrinsic safety of the standard language is irrelevant, it is how safe the use
of the language can be made that matters” - Hatton, Safer C (1995)

4/45

Javain Safety-Critical Systems

Java

m Interesting for safety-critical systems:
m Strongtyping
m Precise definition
m Widely understood
m Language features e.g. exception handling

m Longstanding effort to improve Java...
m Java Community Process’s Java Specification Requests (JSR)

5/45

Javain Safety-Critical Systems

Real-Time Specification for Java (RTSJ)

m Java Community Process: JSR 1
m RTSJ addresses some of the Java’s problems...

m Region-based memory
m Better memory control
m Better scheduling control

m Complex for safety-critical programs

6/45

Safety-Critical Java

7/45

Safety-Critical Java

Safety-Critical Java (SCJ)...

m New language for applications that must be certified

m Aeroplanes
m Robots
m Etc.

m Java Community Process: JSR 302
m Builds on the Real-Time Specification for Java (RTSJ)

m Simpler, hierarchical programming paradigm
m (Natural) language specification ~ 112 pages...

m Defines ~ 36 classes and interfaces
m Does not cover verification

8/45

Safety-Critical Java

SCJ Overview

m Requires areal-time virtual machine

9/45

Safety-Critical Java

SCJ Overview

m Requires areal-time virtual machine
m Borrows from the RTSJ...

m Real-time abstractions
m Memory areas

9/45

Safety-Critical Java

SCJ Overview

m Requires areal-time virtual machine
m Borrows from the RTSJ...

m Real-time abstractions
m Memory areas

m Region-based hierarchical memory management

9/45

Safety-Critical Java

SCJ Overview

m Requires areal-time virtual machine
m Borrows from the RTSJ...

m Real-time abstractions
m Memory areas

m Region-based hierarchical memory management
m Fixed priority scheduling with Priority Ceiling Emulation

9/45

Safety-Critical Java

SCJ Overview

m Requires areal-time virtual machine
m Borrows from the RTSJ...
m Real-time abstractions
m Memory areas
m Region-based hierarchical memory management
m Fixed priority scheduling with Priority Ceiling Emulation
m Three feature sets (compliance levels)

m LevelO
m Levell
m Level 2

9/45

Safety-Critical Java

SCJ Overview

m Requires areal-time virtual machine
m Borrows from the RTSJ...
m Real-time abstractions
m Memory areas
m Region-based hierarchical memory management
m Fixed priority scheduling with Priority Ceiling Emulation
m Three feature sets (compliance levels)

m LevelO
m Levell
m Level 2

9/45

Safety-Critical Java

Compliance Levels

m Level O:
m Single processor

m Cyclic executive
m Level 1: Release Pattern

m Introduce concurrency When a process
m More release patterns becomes available for

execution

m Level 2:

m Highly concurrent

m Multi-processor

m Complicated release patterns
m Suspension

10/45

Safety-Critical Java

SCJAPI

m Safelet: controls the program and starts the Mission Sequencer

B MissionSequencer: instantiates and starts a sequence of Missions

B Mission: controls a set of processes, represented by subclasses of Managed
Schedulable
B ManagedSchedulable: super-type of all four process types...

B PeriodicEventHandler
B AperiodicEventHandler
B OneShotEventHandler
B ManagedThread

11/45

Safety-Critical Java

Mission Sequencer

<=HH|I=’> B
Yes

Sequence
Ended?

1. Initialize: creates and registers schedulables

Continue
Sequence?

Select Mission Mission Mission

Mission Initialization Execution Cleanup

Mission Phases

2. Execute: simultaneously activate mission’s schedulables

3. Cleanup: reset data structures
12/45

Safety-Critical Java

Mission Sequencer

|

—

Schedulable
Object TI

13/45

SCJ Level 2

SCJ Level 2 Features

m Access to Java suspension methods
B wait(),notify(),etc
m Accessto all release patterns:
m periodic
m aperiodic
B run-once after a time offset
B run-to-completion
m Complex program structures due to more concurrent components

m Multiple Mission Sequencers enable multiple Missions to be active
m One active Mission per Mission Sequencer
m Schedulables from any active Mission may preempt, based on their priorities

14/45

SCJ Level 2

SCJ Level 2 Features

m Access to Java suspension methods
B wait(),notify(),etc
m Accessto all release patterns:
m periodic
m aperiodic
B run-once after a time offset
B run-to-completion
m Complex program structures due to more concurrent components

m Multiple Mission Sequencers enable multiple Missions to be active
m One active Mission per Mission Sequencer
m Schedulables from any active Mission may preempt, based on their priorities

14/45

SCJ Level 2

SCJ Level 2 Features

m Access to Java suspension methods
B wait(),notify(),etc
m Accessto all release patterns:
m periodic
m aperiodic
B run-once after a time offset
m run-to-completion
m Complex program structures due to more concurrent components

m Multiple Mission Sequencers enable multiple Missions to be active
m One active Mission per Mission Sequencer
m Schedulables from any active Mission may preempt, based on their priorities

14/45

SCJ Level 2

SCJ Level 2 Features

m Access to Java suspension methods
B wait(),notify(),etc
m Accessto all release patterns:
m periodic
m aperiodic
B run-once after a time offset
m run-to-completion
m Complex program structures due to more concurrent components

m Multiple Mission Sequencers enable multiple Missions to be active
m One active Mission per Mission Sequencer
m Schedulables from any active Mission may preempt, based on their priorities

14/45

SCJ Level 2

—

| Mission Sequencer |

l

!

Schedulable
Object

Mission Sequencer

Schedulable
Object

15/45

SCJ Level 2

—

| Mission Sequencer |

Level 2

!

Schedulable
Object | |

| Mission Sequencer

=

Schedulable
Object

15/45

Modelling and Translation

16/45

Modelling Approach

Circus Language

m Combination of Z and CSP
m Captures both State and Behaviour
m Organised around Processes

m State component (Z) to hold variables
m Actions (Z and CSP) to perform behaviours
m Main action specifies overall behaviour

m Communication through CSP channels

17/45

Modelling Approach

process P =

__State
varl : B
var2 : 7
__Init
State’
varl’ = False
var2' = 42

Action1 = chanl — Skip
Action2 = chan2 — Skip
e Action1 O Action2

18/45

Modelling Approach

Building the Model

m Two Components:

m SCJ’s Application Programming Interface (API)
m Templates for SCJ Programs

m Agnostic of Java

m Combine the two components to capture a program’s behaviour
m Enables program verification
m via CSP’s Model-Checker:

19/45

Modelling Approach

Building the Model

m Two Components:

m SCJ’s Application Programming Interface (API)
m Templates for SCJ Programs

m Agnostic of Java

m Combine the two components to capture a program’s behaviour
m Enables program verification
m via CSP’s Model-Checker: FDR

19/45

Modelling Approach

Building the Model

m Two Components:

m SCJ’s Application Programming Interface (API)
m Templates for SCJ Programs

m Agnostic of Java
m Combine the two components to capture a program’s behaviour

m Enables program verification
m via CSP’s Model-Checker: FDR

19/45

Modelling Approach

Building the Model

m Two Components:

m SCJ’s Application Programming Interface (API)
m Templates for SCJ Programs

m Agnostic of Java

m Combine the two components to capture a program’s behaviour
m Enables program verification
m via CSP’s Model-Checker: FDR

‘FDR4

19/45

Modelling Approach

m Captures the SCJ Level 2 paradigm
m ~ 3300 lines of Circus
m Abstracts away from Java...

m Scheduling
m Resources (E.g. Memory)
m Exceptions

m Expands on a model of SCJ Level 11(~ 700 lines)

m Level 2 features
m API changes
m Also Level 1 features not covered

1Zeyda et al. Circus Models for Safety-Critical Java Programs. Computer Journal (2014)
20/45

Modelling Approach

SCIAPI frm=mim=

SCJ
Framework

FE::::

Circus
Program

SCJ Program

SCJ
Application

Results

FDR

CSP
Program

21/45

Translation

Overview

m Extended existing Level 1 translation tool

m Level 2 Tool: TishtRore
m Automatic generation of models from Level 2 programs

Translation Using TishtRore

m Compiles the program to generate Abstract Syntax Trees (ASTs)
m No annotations needed, unlike Level 1 tool

m Extract program-specific information

m Drop the information into gaps in a template
m Using FreeMarker template engine

22/45

Translation

Translation Using TishtRepe

m TishtRore nroduces models from code:

m Producers-Consumers 6 classes ~1.2 seconds
m Aircraft 25 classes ~2.3 seconds

m ... Some expression rewriting required
m Translating arbitrary Java code

23/45

Model Utility

24/45

Model Utility

Level 2 Problems...

m Modelling Level 2 exposed problems with termination? :

Termination of MissionSequencers
Termination of waiting threads

m No one had thought hard enough about Level 2

2Luckcuck, Wellings, Cavalcanti. Safety-Critical Java: Level 2 in Practice. Concurrency and

Computation: Practice and Experience. (2017)
25/45

Model Utility

Termination of Mission Sequencers

m Originally, any schedulable could terminate any mission sequencer
m Intended to allow a schedulable to terminate the program

m But with Level 2 having multiple active missions...

m Poor link to startup structure
m Breaks encapsulation of Mission
m Chaotic

26/45

Model Utility

—

| Mission Sequencer |

S——

Schedulable
Object

Mission Sequencer

Schedulable
Object

27/45

Model Utility

terminate !

Mission Sequencer |

I

o ——

Schedulable | Mission Sequencer |
Object
Schedulable
Obiject

27/45

Model Utility

—

| Mission Sequencer

l terminate
! v
Schedulable | Mission Sequencer |
Object
Schedulable
Object

27/45

Model Utility

| Mission Sequencer |
H
Schedulable | Mission Sequencer |
Object

terminate
Schedulable
Object

27/45

Model Utility

Termination of Mission Sequencers

m Proposed that when a aMission terminates it tells its MissionSequencer if it
should terminate too

m Mirrors startup
m Restores encapsulation of Mission

m Used my model to compare original and proposed protocol
m Checked that the proposed protocol works

m Showed that it had 94.5% fewer states

m Adopted SCJ v0.96

28/45

Model Utility

Termination of waiting threads

m According to the language specification, during Mission termination the
infrastructure will...

m ‘... wait for all the Managed Schedulable Objects associated with this Mission to
terminate’

m If aschedulable is blocked at this point, it will never terminate

29/45

Model Utility

Termination of Waiting Threads

m Proposed either:

a) SCJ Interrupts all schedulables during termination, or;
b) Add a new method to the schedulable interface that programmers can use to
interrupt a blocked schedulable

m SCJ specification now highlights termination in Level 2:

m Second proposal, but in an existing method
m Provides a uniform way of handling custom termination behaviour

30/45

Model Utility

Top-Down Development

Target for refinement-based development of SCJ programs?

m Correct-by-construction approach
m Refines abstract specifications to concrete specifications. ..
m That capture the SCJ paradigm

m Enables this, but out of scope

3Cavalcanti, Sampaio, and Woodcock. A Refinement Strategy for Circus. Formal Aspects of

Computing. (2003)
31/45

Model Utility

Bottom-Up Development

Translation from SCJ code to model, for program verification
m Model-Checking and Animation

m Catches certain program errors...

m Deadlock
m Divergence/Exceptions

32/45

Program Verification

Overview

m We want to be able to use this model to verify programs...
m But there is no model checker for Circus

m So, we use industry-proven CSP model checker FDR3...

m But, this requires another translation...

33/45

Program Verification

Why Use Circus?

Tight integration of state and behaviour

34/45

Program Verification

Circus to CSPm

m CSPm is the machine-readable version of CSP, used by FDR
m Informal translation from Circus to CSPm

m State in Circus processes becomes state process in CSPm
m Most behaviour in Circus translates straight into CSPm

m However, treatment of state in initial translations produced intractable
models...

35/45

Program Verification

Hi Matthew,
You've currently got three large processes running on csresearch0O:

PID Command Memory Started

6880 refines NMSTModuleAssertion.csp 132001.36 MB Novi1l
11766 fdr3 NestedMissionSequencerTest.csp 66205.74 MB Nov04
35014 fdr3 NestedMissionSequencerTest.csp 32800.37 MB Nov10

(see also attached).

These have exhausted available memory (128GB) and swap space (100GB) so
are impacting on the general availability of the server.

Can | kill any of these processes, or are they likely to complete any
time soon?

36/45

Program Verification

PID Command Memory Started

6880 refines NMSTModuleAssertion.csp 132001.36 MB Nov11l
11766 fdr3 NestedMissionSequencerTest.csp 66205.74 MB Nov04
35014 fdr3 NestedMissionSequencerTest.csp 32800.37 MB Nov10

36/45

Program Verification

These have exhausted available memory (128GB) and swap space (100GB) so
are impacting on the general availability of the server.

Can | kill any of these processes, or are they likely to complete any
time soon?

36/45

Program Verification

Hi Matthew,
Looks like your processes are at it again!

PID Command Memory
27411 refines Application.csp 225997.07 MB

If it's likely to complete soon then absolutely leave it running.
However, | might have to configure a limit to per-process memory use as

the disk swapping means the server gets pretty sluggish! Will your
processes still run with e.g. a 64GB memory limit?

37/45

Program Verification

Looks like your processes are at it again!

PID Command Memory
27411 refines Application.csp 225997.07 MB

If it's likely to complete soon then absolutely leave it running.

37/45

Program Verification

Personal Best

226GB on csresearchO in 1 process

38/45

Program Analysis

Circus to CSPm

m Improved the CSPm model with the help of Tom Gibson-Robinson (FDR’s

maintainer) at Oxford University

m Building distributed CSP processes of ‘complex’ data structures:

m Sets
m Sequences
m Priority Queue

m Made model-checking tractable...

Process controlling a set of value
(Add or remove a number)

| value={0..20} |

p Compiled || 7438.52s (~2hrs)
1 "Checked 3.84s

p Compiled 0.01s
2 ["Checked 4.41s

39/45

Program Verification

Animation and Model Checking in FDR3

m Animation:
m Step through model to compare to API or running program
m Model-Checking:

m Deadlock- and divergence-freedom
m Enables custom checks: exceptions, particular program behaviours, etc

40/45

Summary

41/45

Model Summary

m Close correspondence with the SCJ API
m Validated against API

m Extends existing Level 1 model...
m Validated against API

m Our modelling effort simplified SCJ’s termination protocol...
m Adoptedinv0.96

42/45

Program Verification Summary

Program Analysis

m Modelling approach enables verification technique
m Translation to CSP, for FDR
m Circus is close to CSP
m Scope for automation
m Recent tool that automates Circus to CSPm translation*

m Limitations on input models
m | suspect similar problems with state explosion

“Beg and Butterfield. Development of a Prototype Translator from Circus to cSPM. ICOSST (2015)
43/45

Future Work

m More general translation approach
m Less expression rewriting
m Automate Circus to CSPm translation

m Dealing with data
m Simplify customised checks

44/45

Thank you for listening

45/45

	Java in Safety-Critical Systems
	Safety-Critical Java
	Modelling and Translation
	Model Utility
	Summary

